
ProtoLeaks: A Reliable and
Protocol-Independent Network Covert Channel

Arne Swinnen, Raoul Strackx, Pieter Philippaerts, and Frank Piessens

Dept. of Computer Science, University of Leuven

Abstract. We propose a theoretical framework for a network covert
channel based on enumerative combinatorics. It offers protocol indepen-
dence and avoids detection by using a mimicry defense. Using a network
monitoring phase, traffic is analyzed to detect which application-layer
protocols are allowed through the firewalls. Using these results, a covert
channel is built based on permutations of benign network objects, such
as FTP commands and HTTP requests to different web servers. Any
protocol that offers reliability guarantees can be plugged into the frame-
work. This includes any protocol that is built on top of the TCP protocol.
The framework closely mimics the behavioral statistics of the legitimate
traffic, making the covert channel very hard to detect.

Keywords: timing channel, ordered channel, adaptive covert communication

1 Introduction

Protection of private data on a corporate network is challenging due to the large
amount of data that is typically involved, the number of systems on the net-
work that are potentially compromised by malware, and users that are often
security-unaware. As a last line of defense, intrusion detection systems (IDSs)
and firewalls monitor outgoing network connections to prevent sensitive infor-
mation from leaking out of the network. Usage of unknown protocols or other
suspicious behavior patterns can be detected. Covert channels, however, can also
be built using benign channels.

Traditionally, network covert channels are classified into storage and timing
channels [1], where most existing covert channels fall into the former category.
Storage channels attempt to hide covert data inside header or footer fields of
specific protocols or within payload fields of messages themselves [2]. In gen-
eral, a high capacity can be achieved by this method, but once these channels
are documented a network administrator is able to locate them easily and take
appropriate countermeasures by means of content-based detection schemes [3].
Classic timing channels hide information by modifying timing mechanisms. In
a networked environment this is often realized by varying packet rates [4] or
changing inter-packet delays [5]. Active channels introduce unseen traffic, as op-
posed to passive channels which only alter timings of existing packets. Detecting



timing channels is hard since only anomaly-based detection schemes are appli-
cable, which can be bypassed by mimicking monitored legitimate network traffic
properties. The major disadvantage of timing channels is the low throughput
and the common need for absolute time synchronization between sender and
receiver, which complicates practical implementations. They also are often not
immune to dynamic network conditions such as packet duplication, packet loss
or noise.

Recently a new family of network timing covert channels was presented based
on enumerative combinatorics [6]. This combinatorial approach exploits the re-
lationship of network objects. The absolute time synchronization constraint be-
tween sender and receiver is relaxed to relative time synchronization while higher
capacity compared to classic timing channels can be achieved. The method
is based on two fundamental properties which affect inter-relationship among
network objects: distinguishability and sequence detectability. Distinguishability
means that one network object can be differentiated from one another, whereas
sequence detectability implies whether the order of a sequence of network ob-
jects can be discriminated. These properties determine the number of unique
arrangements which can be constructed from the pool of network objects. Once
these arrangements are known, a mapping between arrangements and bits is con-
structed. These encoding and decoding algorithms are based on functions which
map combinations to positive integers and vice versa, which are known as rank-
ing and unranking functions. This new technique is very suited for cases where
the sequence of the chosen network objects is inherently subject to variation, for
example human browsing behavior [6] or the packet reordering phenomenon in
the internet [7].

The covert channel presented in this paper exploits the fact that different
reliable protocol packets or sessions are not always sent in the exact same se-
quence over time. A human being does not always execute his actions in the
same order, nor do daemon applications execute in predefined sequences. It is
the first network covert channel, as far as we know, that offers protocol indepen-
dence. ProtoLeaks is the first ordered channel that makes the distinction between
network objects and network object instances. Furthermore, it utilizes a new en-
coding method based on permutations of network objects with repetitions, which
achieves higher capacity than methods presented in related work. In addition,
a known encoding method based on permutations of network objects without
repetitions is thoroughly analyzed, which results in the identification of some
desirable properties for mimicking legitimate traffic. This is achieved through a
brand new mimicking algorithm based on a machine learning clustering tech-
nique. Non-overlapping clusters of legitimate transmit times are constructed to
represent a model of legitimate traffic, after which the second encoding scheme
can be exploited to generate traffic according to these clusters.

The remainder of this paper is structured as follows. In Section 2 possible
threat models are described. An outline of the channel design is given in Sec-
tion 3. Section 4 discusses how legitimate traffic can be mimicked. Experimental



results are presented in Section 5. Section 6 highlights related work and Section 7
concludes this paper.

2 Threat Model

ProtoLeaks encodes covert data in sequences of network object instances con-
taining different protocol payloads or having distinct destinations. Therefore, the
receiver must be able to notice all these instances inserted into the network by
the sender in the same order. Figure 1 depicts two plausible locations of sender
and receiver. In the first scenario (Fig. 1(a)) the receiver is able to monitor all
packets traveling between the distinct servers and the sender by eavesdropping
on a common routing path. This can be achieved in practice by sniffing network
traffic. In the second scenario (Fig. 1(b)) the receiver controls all the distinct
servers. They report every arrival of a packet to the receiver before acknowledg-
ing the arrival of the packet to the sender, to make sure the order of arrival is
maintained at the receiver’s end. This second scenario is the most likely scenario
to be used in practice, because of the impracticalities of network sniffing on
larger networks. However, in the first scenario the distinct servers that are used
must not be owned by the receiver but can be chosen freely, which facilitates
deployment.

We assume the presence of a warden (i.e. an intrusion detection system)
that resides on the network and guards against any network covert channels.
The warden is active and stateful, which implies he can inspect and modify
observed packets and remember previously seen packets as well. He may also
block protocols based on the time of day e.g. sending emails after midnight may
not be permitted.

(a) Receiver eavesdrops on common
routing path

(b) Servers report packet receipt to re-
ceiver

Fig. 1. Two possible communication scenarios between sender and receiver

3 Channel Design

Given the threat model of the previous section, we now describe our combinato-
rial approach. In Section 4 we will show how this approach can be combined with



a network monitoring phase to mimic legitimate traffic to circumvent a stateful
active warden.

3.1 Combinatorial Approach

Pairs of reliable protocols and server addresses are used as network objects o in
ProtoLeaks. Packets or sessions are possible examples of network object instances
oi, which can be seen as realizations of network objects on the wire. They are
the building blocks for the covert channel described in this paper. These net-
work objects as well as their possible instances satisfy both the fundamental
properties of distinguishability and sequence detectability. They are distinguish-
able since one can always detect and compare the reliable protocol carried by
two instances by analyzing their payload. Network protocol analyzers such as
Wireshark1 already offer this functionality. Because only reliable protocols are
considered, sequence detectability is guaranteed when one instance is sent only
after the previous instance has arrived its destination successfully.

It is important to stress that ProtoLeaks does not constrain the payload of a
protocol-compliant packet of a network object instance in any way. It only deals
with permutations of network objects. For example, when considering the FTP
protocol, a USER command and a PASS command sent to one specific FTP
server at address x are both fine examples of instances of network object o =
(FTP, Ftp Server Address x). In fact, if one has an FTP protocol-specific covert
channel to his disposal, it could be embedded in ProtoLeaks trivially. However,
to stay undetected, it is advised to issue commands fully compliant with the
considered reliable protocol. Mimicking typical protocol-specific scenarios when
a stateful protocol is chosen, is also required to avoid detection by the warden. By
obeying these guidelines, a warden cannot raise suspicion based on the contents
of the command itself, nor on the logical flow of commands. In the case of the
FTP protocol, a typical login scenario requires that USER and PASS commands
are sent consecutively to the FTP server x via the same TCP connection. When
sessions were chosen as network object instances, a complete login scenario is a
perfect candidate for a network object instance oi of the aforementioned network
object o. When packets were chosen as network object instances, these commands
can be interpreted as two network object instances ou and op. The sender must
keep the TCP connection open after sending ou. When a new instance of object
o has to be sent and the TCP connection is still available, op should be sent to
complete the login scenario. If the TCP connection is not available any more, the
scenario should be restarted from scratch on a freshly established connection.
The network object instance ou is then sent again.

The advantage of session network object instances is that connections do
not have to remain available between consecutive sends of instances of the same
network object. For every new object instance, a whole session is completed. The
major downside of this type of instance is loss of capacity compared to packet

1 http://www.wireshark.org



object instances, since a complete session will obviously use more bandwidth
than a single packet.

3.2 Encoding and Decoding

The basic encoding and decoding process is depicted in Fig. 2. The sender first
reads β bits from its covert data stream. Subsequently, this bit stream is trans-
formed to a decimal number and handed over to the unranking function. This
function always takes a decimal number and an ordered list of n distinguishable
and sequence detectable network objects, which is agreed upon by both parties
beforehand, and spits out a new sequence of these objects of length l, represent-
ing the provided decimal number. This permutation of network objects is given
to the sender’s network component which is responsible for sending appropriate
instances of them in the given order. As packets are only send after reception of
the previous package was acknowledged, these l object instances are observed in
the same order at the receiver’s end. The receiver translates this permutation of
network object instances to a permutation of network objects again and provides
this permutation to the ranking function. This function takes this permutation
of length l and the same ordered list of n distinguishable and sequence detectable
objects and returns a decimal number. Finally, this decimal number is converted
back to a bitstream of β bits and added to the received covert data stream.

Recall that a network object in ProtoLeaks is a unique pair of a reliable
protocol and a server address. A network object instance is packet or session
compliant with the object’s protocol sent to the object’s server address. Note
that symbols β and l as well as the ranking and unranking functions are specific
to the chosen permutation flavor. The number of bits β directly depends on the
total number of permutations α and is given by the following equation:

β = blog2 αc (1)

In the remainder of this section, two practical encoding schemes based on
distinct flavors of permutations are presented and compared. The power encoding
scheme allows repetitions of network objects and is aimed at high capacity.
The factorial encoding scheme does not allow repetitions but exhibits useful
properties to mimic legitimate traffic.

The Power Encoding Scheme In this encoding scheme, permutations of net-
work objects containing duplicates are employed. Allowing repetitions in per-
mutations of network objects means that one permutation of network objects
may contain multiple entries of one network object o. This implies that multiple
network objects instances of that same network object o may be scheduled con-
secutively. Since the actual payload of the protocol-compliant instances may dif-
fer, this will not raise suspicion of wardens when the payload is chosen carefully.
The total number of permutations with repetitions α is given by the following
equation:

α = nl (2)



Fig. 2. Basic encoding - decoding process

The symbol n represents the number of available network objects. The symbol
l indicates the length of the permutations and is free to choose. When n is not
a power of two, choosing a greater value for l increases the maximum number
of bits β that can be represented by one permutation, because of the binary
logarithm in (1). This number of bits can be calculated by substituting (2) in
(1).

No ranking and unranking functions for permutations with repetitions were
located in existing literature. We found that constructing a bijective function
between permutation with repetitions and binary numbers is possible when in-
terpreting a permutation as a number of base n. Each of the network objects is
first mapped to a positive integer in the range [0..n− 1]. This mapping is known
by sender and receiver. A permutation is then transformed to a number of base
n by replacing every network object in the permutation by its corresponding
value in this mapping. Translation between a permutation and β bits can then
be reduced to a case of base conversion between numbers of base n and base 2.

The Factorial Encoding Scheme The number of permutations without rep-
etitions α is given by the following equation:

α = n! (3)

The symbol n still represents the number of available network objects. The length
of one permutation is always equal to n. The maximum number of bits β that can
be represented by one permutation can again be calculated by substituting (3) in
(1). Ranking and unranking functions for permutations without repetitions are
readily available in existing literature. An algorithm for ranking and unranking
in linear time was given by Myrvold [8].



Comparison of encoding schemes The capacity of both encoding schemes in
terms of bits/permutation and bits/network object instance is given in Fig. 3(a)
and Fig. 3(b) for n ∈ [0..100]. In (2), a length l = n was chosen in order to
compare permutations of the same length from both schemes. It is clear that the
power encoding scheme achieves higher capacity. This is due to the employment
of permutation with repetitions in this scheme.

However, the factorial encoding scheme exhibits some other desirable prop-
erties useful for mimicking legitimate traffic. First, it guarantees that the same
amount of instances from every available network object are generated during
the covert communication. This is because each permutation contains exactly
one instance of each available network object. In this way, the sender has more
control over the generated traffic. In the power encoding scheme, the amount of
generated network object instances of one network object depends on the dis-
tribution of the covert data. Only when the data is distributed uniformly, the
same amount of network objects instances will be generated over time, which is
an assumption that cannot be made in general.

Second, a trivial command channel between sender and receiver can be con-
structed. Since permutations with repetitions of network object instances are
never generated for covert data transmission by the factorial encoding scheme,
these kind of permutations can be used to signal commands from sender to re-
ceiver instead. In this way, permutations without repetitions are reserved for the
covert data channel and all other permutations are available to the sender to
issue commands to the receiver, effectively constructing a unidirectional com-
mand channel. The number of available permutations for the command channel
is given by nn−n! and is visible for varying values of n as the distance between
both functions in Fig. 3(a).

(a) Capacity in bits / permutation (b) Capacity in bits / instance

Fig. 3. Comparison of capacity of presented encoding schemes



4 Mimicking Legitimate Traffic

Because ProtoLeaks encodes data in sequences of packet or session instances
but does not enforce anything on the contents of the chosen payloads of these
instances, it can trivially bypass content-based detection schemes by carefully
construction these payloads. However, anomaly-based detection schemes can still
notice peculiarities in generated outgoing traffic by the covert channel. Therefore,
mimicking legitimate traffic properties is a must to stay undetected. This is
achieved by the mimicking algorithm described in this section.

The algorithm expects access to a log file containing legitimate traffic of
one day of the week to perform analysis on. The choice for granularity of one
weekday was made based on the findings of Danzig in [11]. He noticed that
protocol traffic distributions often differ even between days of the week. This log
file can be obtained by the sender in a preliminary network monitoring phase. A
logical scenario would be that the sender first sniffs outgoing legitimate traffic
for at least a week before moving on to the communication phase. During the
communication phase, he keeps on sniffing outgoing legitimate data to obtain
recent logs. Logs of multiple weeks could also be combined to obtain a better
fingerprint of overall network traffic for longer periods.

The algorithm also assumes the availability of an ordered collection of net-
work objects O. This collection is divided in ordered subcollections Op based on
the reliable protocol p employed by network object o ∈ O. Ohttp thus represents
an ordered subcollection of network objects relying on the HTTP protocol.

The mimicking algorithms exhibits four desirable properties. First of all, over-
all increase of original legitimate traffic observed in the log file due to generated
traffic of the covert channel can be limited to a certain (strictly positive) percent-
age. This percentage is expected as a parameter γ by the mimicking algorithm.
Limiting the overall traffic increase is vital to remain undetected for wardens
monitoring this property. Second, the mimicking algorithm makes sure that the
covert channel only utilizes reliable protocols which have been observed in legiti-
mate traffic. This bypasses security policies restricting outgoing protocols. Third,
ratios between these identified reliable protocols are maintained. For example, if
there is twice as much HTTP traffic than FTP traffic present in the legitimate
traffic log file during a certain time period, the mimicking algorithm will gener-
ate two HTTP requests for every FTP request. In combination with the overall
traffic increase limitation, this effectively limits traffic increase of each identi-
fied reliable protocol to the same percentage. Fourth, legitimate traffic transmit
times are mimicked by the algorithm. In a typical company network, the most
significant portion of traffic is observed during daytimes. Generated traffic not
exhibiting this behavior could be detected trivially.

The algorithm is based on a combination of a clustering technique and the
factorial encoding scheme described in Sect. 3. It consists of four main steps,
which are outlined in the following subsections.



4.1 Protocol Identification and Clustering

During the first step, reliable network protocols are identified in the legitimate
traffic log file. For each of these protocols, outgoing network object instance
transmit times are extracted and the k-means clustering algorithm[9] is applied
to this data. Each identified cluster represents a time period, obtained by taking
the earliest and last outgoing instance transmit time in the cluster. The bound-
aries between the identified clusters are interpreted by the mimicking algorithm
as moments in time when the shape and/or regularity of legitimate traffic of the
considered reliable protocol substantially changes. The identification of clusters
is a way to model the dynamic behavior of legitimate traffic.

The standard k-means clustering algorithm expects a parameter indicating
how many clusters should be identified. Since we don’t know this parameter in
advance but on the contrary are interested in this value, a cluster validation
criterion is used. The k-means algorithm is executed for varying values of the
parameter indicating the desired number of clusters, and each result is validated
by calculating its average silhouette value [10]. The silhouette value of a member
of a cluster is the distance from this member to the cluster’s center. The cluster-
ing result with the smallest average silhouette value for all clusters is chosen as
the optimal clustering for the considered protocol by the mimicking algorithm.

Finally, for each identified cluster c of protocol p, the observed outgoing
legitimate instances Cc[p] during the time period described by the cluster are
counted. Subsequently, this value is divided by 100 and multiplied by the traffic
percentage limit parameter γ to obtain Mc[p] = bCc[p] ∗ γ

100c, the maximum
number of instances that can be generated in the time period described by c.
This value is necessary in the next step of the algorithm.

4.2 Transformation to Temporal Clusters

In this step, the collection of clusters for each reliable protocol identified in the
previous step is transformed into a new collection of temporal clusters. In the
resulting collection, each cluster contains a list of reliable protocols observed
throughout the time period the cluster describes.

There are two situations in which two clusters may overlap in time. These
situations are handled by subroutines mergeIncluding and mergePartiallyOver-
lapping, which are explained graphically in Fig. 4. These routines take two over-
lapping clusters and return a collection of three non-overlapping clusters, each
containing an appropriate protocol list P . However, a useless cluster can be in-
troduced by these subroutines. An useless cluster c is a cluster whose maximum
number of network object instances σc =

∑
p∈Pc

Mc[p] that can be generated
in the time period described by c is equal to zero. Such a cluster does not sig-
nal a significant change of shape or regularity in legitimate traffic. To filter out
these clusters, σc is calculated for every new cluster that is introduced in these
subroutines. When σc = 0, the cluster c is discarded.



(a) mergeIncluding(c1, c2) (b) mergePartiallyOverlapping(c1, c2)

Fig. 4. Functions handling the merging of two overlapping clusters

4.3 Permutation scheduling

In this step a permutation schedule is composed. The main idea is to use the
data channel of the factorial encoding scheme to send covert data during time
periods described by clusters and to use the command channel of the scheme to
signal transitions between consecutive clusters. Recall that boundaries between
clusters are moments in time when the shape and/or regularity of legitimate
traffic leaving the sender’s network substantially change. A transition to a new
cluster indicates a change of observed reliable protocols P and/or a significant
in- or decrease of the maximum number of instances M [p] of a protocol p.

For each cluster c, a distinct list of network objects Oc to build permutations
from is assembled. This list is based on the ratios between the available protocols

Pc in this cluster. First, nbPerm = maxp∈Pc(dMc[p]
Op

)e is calculated. Recall that

Op represents an ordered subcollection of all available network objects O based
on the reliable protocol p. Then, ratios of protocols in the cluster are defined

as Rc[p] = b Mc[p]
nbPermc,∀p ∈ Pc. Now, for every protocol p ∈ Pc, the first Rc[p]

network objects of Op are taken. The collection of all these chosen network
objects is called Oc. The ratios between network objects based on distinct reliable
protocols p in this collection are equal to the ratios of network object instances
observed in legitimate traffic.

The schedule is now created as follows. For every cluster c a number of
permutations based on Oc representing covert data are generated. The number
of permutations is equal to nbPerm. Since each cluster c utilizes a different
collection Oc, transition to a new cluster must be signaled to the receiver. This
is done by exploiting the command channel available in the encoding scheme.
This transition command is represented by a permutation containing repetitions.
The smallest possible permutation containing two repeated network objects of
Oc is chosen, to limit the traffic overhead.



4.4 Packet scheduling

In this final step, the permutations are effectively transmitted over the network.
The clusters are sorted according to start time and for each cluster c the total
number of network instance objects to be transmitted are calculated. This num-
ber is equal to the number of scheduled permutations nbPerm in this cluster
multiplied by the size of Oc, the length of one permutation. Two more instances
are added to this number, to account for the transition command permutation.

In order to not introduce any regularity in generated traffic, transmit times
for network objects instances of permutations are generated based on legitimate
instance transmit times. First, an inverse cumulative distribution function is
fitted on these transmit times observed in the time period represented by the
cluster. Hereafter, the inverse transformation method [11] is used to generate a
number of instance transmit times from this distribution. After instance transmit
times for all clusters have been generated, the actual network object instances
are sent over the wire chronologically according to these transmit times.

On the receiver’s side, there are two states. In the initial state, the network
object list Oc utilized by the currently active cluster c at the sender’s side is
discovered. The receiver can detect this list by exploiting the property that
a permutation in the factorial encoding scheme does not contain repetitions.
When a network object instance is observed that has been seen before, the
receiver knows the second permutation is started and can deduce Oc from the
first permutation that has been received. This permutation still represents covert
data, so no bandwidth is lost. At this point the receiver enters its second state,
pure covert data decoding. This state is left when a permutation of Oc containing
repetitions is observed. This is the transition command from the sender. The
receiver then goes back to its initial state.

5 Evaluation

The sender’s encoder and the receiver’s decoder were implemented in C++ on
a Windows 7 machine having Matlab and Wireshark installed. They support
five protocols, namely HTTP, FTP, IMAP, POP and SMTP. Packets as well as
sessions can be chosen as network object instances. In both cases, the encoder
executes a typical scenario for the considered protocol of the network object. For
ease of evaluation, the threat model where the receiver is able to obtain outgoing
traffic logs from the sender was chosen (see Fig. 1(a)). The decoder thus expects
a traffic log file of the sender’s generated traffic, which can be delivered offline
without loss of generality, since the channel is unidirectional. Both encoder and
decoder implementations are able to call and retrieve output from the command-
line version of Wireshark, Tshark, to perform traffic analysis. The encoder is also
able to call Matlab routines such as k-means and data fitting functions through
the C++ Matlab Engine2. Therefore, it can execute the mimicking algorithm
described in Sect. 4 automatically. The network objects utilized were taken from

2 http://www.mathworks.nl/help/techdoc/matlab_external/f29148.html



publicly available sources. Http servers were taken from Alexa3. Ftp servers
were taken from several public lists of Linux distro mirror servers. A number of
accounts from email services supporting IMAP, POP and SMTP were used.

5.1 Capacity

To determine the real world capacity of both schemes, the average rate at which
network objects instances can be sent and acknowledged over the wire was identi-
fied experimentally. Varying rates were obtained through a number of repeated
tests, from which average values of approximately 60 packet instances/second
and 35 session instances/second were obtained. This results in the real world
capacity for both encoding schemes depicted in Fig. 5 for varying number of
network objects n. Again, the length l from permutations in the power encoding
scheme were chosen equal to n, to simplify comparison of both schemes. We see
that a capacity of 399 bits/second is reached by the power encoding scheme uti-
lizing packet network object instances, when using one hundred network objects.

(a) Empirical capacity of ProtoLeaks for
packet network object instances

(b) Empirical capacity of ProtoLeaks for
session network object instances

Fig. 5. Comparison of capacity of presented encoding schemes

5.2 Stealth

To evaluate the stealthiness of ProtoLeaks, the mimicking algorithm was de-
ployed to mimic legitimate traffic taken from the ISCX 2012 Intrusion Detection
Evaluation Dataset [12]. This dataset contains complete and non-anonymized
network logs of exactly one week and was made specifically to evaluate the ef-
fectiveness of intrusion detection systems. An extract of this dataset containing
traffic of the first day generated by one of the workstations in the network was

3 http://www.alexa.com



taken and handed to the encoder to mimic traffic from. Only four out of five
supported protocols were present in the extract, no IMAP traffic was observed.

The algorithm was executed for varying values of γ, the legitimate traffic limit
parameter. The results are depicted in Table 1 for packet instances only, due to
page limitations. One can see that ratios present in original traffic are maintained
in generated traffic. It’s also clear that γ is taken into account. Figure 6 depicts
the CDFs of protocol-specific legitimate and generated packet instance traffic.
One can conclude from these graphs that protocol-specific legitimate traffic is
mimicked successfully. Finally, the popular KS-test [13] and Regularity Test [14]
were performed on legitimate and generated instance transmit times. They were
both negative.

γ #clusters #bits #total instances #http #ftp #smtp #pop

10 21 20969 3584 3441 30 83 30
20 24 44068 7166 6865 54 171 76
30 25 66623 10739 10296 77 254 112
40 25 89720 14313 13717 101 341 154
50 28 112745 17893 17144 125 417 207
60 28 135411 21455 20565 143 510 237
70 28 158421 25013 23991 167 583 272
80 28 180620 28588 27406 190 679 313
90 28 203540 32140 30826 214 753 347
100 29 226699 34421 32950 234 833 404

Total Legitimate Data 34439 32892 228 864 455
Table 1. Results of the transformClusters algorithm on packet instances for varying γ

Fig. 6. Protocol-specific packet instance CDFs of legitimate and generated traffic



6 Related Work

Most of the research in the field of covert channels has been done on storage
channels [2]. Only recently several practical ordered channels emerged. Cloak
encodes covert data in unique distributions of packets over several TCP flows
[15], which is comparable to the approach taken in [16]. It was the first chan-
nel that took advantage of the reliability service that TCP offers to construct
a robust ordered channel. The packet reordering phenomenon in the internet
protocol is misused to hide covert data in [7]. The dependency on the natural
phenomenon and dynamic network conditions severely constrain the capacity of
this covert channel. However, by mimicking the original phenomenon, it becomes
undetectable. WebLeaks is an active ordered channel which encodes covert data
in permutations of web page requests without repetitions in [6], which corre-
sponds to the factorial encoding scheme ProtoLeaks also deploys. It utilizes the
payload of HTTP requests as well as distinct websites to obtain a high num-
ber of arrangements and thus capacity. It is also very hard to detect, since it
mimics legitimate IPDs. This makes it a perfect candidate to be embedded in
ProtoLeaks.

7 Conclusion

This paper introduced a theoretical framework for a network covert channel
based on enumerative combinatorics, called ProtoLeaks. It features a novel de-
sign that offers a pluggable protocol interface, essentially making the design
fully protocol independent. Any protocol that offers reliability guarantees can
be plugged into the framework. This includes any protocol that is built on top
of the TCP protocol. Furthermore it exhibits a number of desirable properties
such as reliability, better capacity than existing channels, and the possibility to
embed other protocol-dependent covert channels.

In addition, a mimicking algorithm was presented which models legitimate
traffic with cluster-based machine learning techniques. Covert traffic is then gen-
erated based on these clusters, which successfully evades detection by modern
intrusion detection systems.

References

1. National Computer Security Center, US DoD. Trusted Computer System Evaluation
Criteria. Tech. Rep. DOD 5200.28-STD, 1985.

2. S. Zander, G. Armitage, P. Branch. A Survey of Covert Channels and Countermea-
sures in Computer Network Protocols. IEEE Communications Surveys and Tutorials,
9(3):44–57, 2007.

3. G. Fisk et al. Eliminating Steganography in Internet Traffic with Active Wardens.
Proc. 5th Int’l. Wksp. Information Hiding, 2002.

4. H. Eßer, F. Freiling, “Kapazitätsmessung eines verdeckten Zeitkanals über HTTP,”
Tech. Rep. TR-2005-10, 2005.



5. G. Shah, A. Molina, M. Blaze, “Keyboards and covert channels,” Proc. 15th Conf.
USENIX Security Symposium, 2006.

6. X. Luo, P. Zhou, E. W. W. Chan, R. K. C. Chang, W. Lee. A Combinatorial Ap-
proach to Network Covert Communications with Applications in Web Leaks. Pro-
ceedings of the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2011.

7. A. El-Atawy, E. Al-Shaer. Building Covert Channels over the Packet Reordering
Phenomenon. IEEE INFOCOM 2009, 2009.

8. W. Myrvold and F. Ruskey, “Ranking and unranking permutations in linear time,”
Information Processing Letters, vol. 79, pp. 281–284, 2000.

9. J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algo-
rithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979.

10. P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20,
1987.

11. P. B. Danzig and S. Jamin, “tcplib: A library of internetwork traffic characteris-
tics,” tech. rep., 1991.

12. A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a
systematic approach to generate benchmark datasets for intrusion detection.,” 2012.

13. S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-based covert
timing channels: Automated modeling and evasion,” 2008.

14. S. Cabuk, C. E. Brodley, C. Shields. IP Covert Timing Channels: Design and
Detection. Proc. 11th ACM Conf. Computer and Communications Security (CCS),
pages 178–187, 2004.

15. X. Luo, Ee W. W. Chan, R. K. C. Chang. Cloak: A Ten-fold Way for Reliable
Covert Communications. Proceedings of European Symposium on Research in Com-
puter Security (ESORICS), 2007.

16. Hassan Khan, Yousra Javed, Fauzan Mirza, Syed Ali Khayam. Embedding a Covert
Channel in Active Network Connections. IEEE Global Telecommunications Confer-
ence, 2009.


